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High throughput screening

• High Throughput Screening (HTS) is a method that uses automation and 

large data set processing to quickly assay the biological or biochemical

activity of a large number of compounds, proteins, and genes.

• HTS is an approach that has gained widespread popularity over the last two

decades.
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HTS – dimensionality issue
Platform Number of observations

(up to)
Number of features

(up to)

PCR 102 – 103 101 – 102

RNA microarrays 102 – 103 104

Tiling arrays 102 – 103 106 – 107

RNA sequencing 102 – 103 106 – 107

SNP microarrays 102 – 103 105 – 106

CNV arrays 102 – 103 106

Methylation arrays 102 – 103 108 – 109

Whole genome sequencing 102 – 103 109
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High throughput screening

Advantages Disadvantages
Miniaturization (low sample volume, less 

waste)
High cost

Automation (high speed, unattended
operation, better data reproducibility)

Relatively low data quality (accuracy, 
precision, especially for weak/low signals)

Relatively low background signal Data analysis (false positive discoveries)
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Data in radiation research
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CASE A: A LOT OF FEATURES



Statistical analysis
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Significance tests

• Formal procedure for comparing observed data with a hypothesis whose 
truth we want to assess.

• Hypothesis: statement about the parameters in a population or model

• Results of the test are expressed in terms of a probability that measures 
how well the data and the hypothesis agree.
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Multiple testing

• Statistical data analysis usually requires the verification of multiple 
statistical hypotheses.

• In the case of a single test, it is possible to determine a priori α level to 
control the first type of error (i.e. rejection of the null hypothesis when it is 
correct; false positive FP). 

• For example, α = 0.05 means that on average 1 in 20 tests will give a false 
positive result. If we run 100 tests with α = 0.05 for each test, we can expect 
an average of 5 false positive results.  
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Example

• Let's generate two series of 16 measurements that are observations of 

random variables with the distribution N (0,1).

• We will calculate the values of the test statistics and the associated p-

values of the test verifying the hypothesis about the equality of the mean 

values of both distributions (t test).

• We will repeat the experiment n = 25 000 times.
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Distribution of the test statistics
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False positives
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For α=0.05 and two-sided
test tcritical= 2.04
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False discoveries …

How can we deal with FPs and FNs?
• experimental validation – same platform, different platforms (p-value

integration);
• statistical techniques - multiple testing correction (statistical analyses), 

multiple random validation (machine learning: classification, clusterisation, 
and so on);

• literature search;
• functional analysis;
• estimation of the effect size. 
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Correction for multiple testing

• In the case of multiple testing of statistical hypotheses, the goal is to control 

the number of false positive results not only at the level of a single test but 

the whole series (test family).
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Error control methods

A number of type I error control indicators have been proposed:
1. PCER (per-comparison-error-rate) - equal to the expected number of 

false positive test results (rejection of the null hypothesis if it is true) 
related to the number of tests performed→ ⁄𝐸𝐸 𝐹𝐹𝐹𝐹 𝑛𝑛 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖

2. PFER (per-family-error-rate)  - equal to the expected number of false 
positive test results→ 𝐸𝐸 𝐹𝐹𝐹𝐹 = ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖

3. FWER (family-wise-error-rate) - equal to the probability of rejecting at 
least one true null hypothesis→ 𝑃𝑃(𝐹𝐹𝐹𝐹 ≥ 1)

4. FDR (false-discovery-rate) - defined as the expected value of the ratio of 
false positive (FP) results in the positive (R) group→ 𝐸𝐸 �𝐹𝐹𝐹𝐹

𝑅𝑅 𝑅𝑅 > 0
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FWER (family-wise-error-rate)

• The FWER index is equal to the probability of rejecting at least one true null 

hypothesis:

• The most popular methods to control FWER were proposed by Bonferroni

(1936) and Dunn-Šidák (1958, 1967).

)1Pr( ≥= FPFWER
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FWER

• By using Bonferroni's inequality

a correction of the significance level of a single test is given that allows 
FWER control to not greater than π: 

This procedure is called the Bonferroni correction (1936).

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜋𝜋 ⇒ 𝛼𝛼 =
𝜋𝜋
𝑛𝑛

Pr �
𝑘𝑘=1

𝑛𝑛

𝐸𝐸𝑘𝑘 ≤ �
𝑘𝑘=1

𝑛𝑛

Pr( 𝐸𝐸𝑘𝑘)
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FWER – example

i 1 2 3 4 5 6 7 8 9 10

p(i) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350

Required error level π = 0.05. 

Bonferroni's correction means verifying a single hypothesis at 0.005. 

We reject hypothesis 1 and 2, accepting the others.
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FWER

• Assuming the independence of tests, the FWER index can be estimated as 
equal to:  

• If we assume that each test will be carried out with the same level of 
significance α, then for a fixed value of the FWER indicator

• This method is called the Dunn-Šidák method (1958, 1967). 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝜋𝜋 = 1 − (1 − 𝛼𝛼)𝑛𝑛 ⇒ 𝛼𝛼 = 1 − (1 − 𝜋𝜋) �1 𝑛𝑛

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = Pr( 𝐹𝐹𝐹𝐹 ≥ 1) = 1 − Pr( 𝐹𝐹𝐹𝐹 < 1) = 1 −�
𝑗𝑗=1

𝑛𝑛

(1 − 𝛼𝛼𝑗𝑗)



Silesian University
of Technology

FWER – example

i 1 2 3 4 5 6 7 8 9 10

p(i) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350

Required error level π = 0.05. 

Dunn-Sidak's correction means verifying a single hypothesis at 𝛼𝛼 = 1 −
1 − 0.05

1
10 = 0.0051. 

We reject hypothesis 1 and 2, accepting the others.



Silesian University
of Technology

FWER - stepwise methods

• Testing power is significantly reduced by using Bonferroni or Dunn-Šidák 

corrections.

• In the stepwise methods, the α level is corrected with each subsequent test, 

taking into account only the remaining tests to be corrected.
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FWER - stepwise methods

The most popular method is the Holm method (1979). 

1. Sort the results (p values) of individual tests from the smallest to the highest value p(1) ≤ p(2) ≤ 

... ≤ p(n) and denote by H(i) the hypothesis associated with the value of p(i).

2. If p(1) > π/n – no H(i) hypothesis will be rejected

3. If p(1) ≤ π/n – there is an evidence to reject the hypothesis H(1); 

4. If p(2) > π/(n-1) – acceptance of all H(i) hypotheses for i = 2, ..., n

5. If p(2) ≤ π/(n-1) – there is an evidence to reject the hypothesis H(2); 

6. …
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FWER – stepwise methods

i 1 2 3 4 5 6 7 8 9 10

p(i) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350
𝜋𝜋

𝑛𝑛 − 𝑖𝑖 + 1
0.0050 0.0056 0.0063 0.0071 0.0083 0.0100 0.0125 0.0167 0.0250 0.0500

Required error level π = 0.05. 

1. Holm method: we start from p(1); reject if p(i) ≤ π/(n-i+1)

2. For our data i ≤ 3.
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FWER - stepwise methods

An alternative to the Holm procedure is the Simes-Hochberg procedure (1986, 1988), which starts from the 

highest value p(n)

1. If p(n) ≤ π then all H(i) hypothese are rejected, i = 1, …, n;

2. If not, there is no evidence to reject H(n), and H(n-1) is analyzed

3. If p(n-1) ≤ π/2 then all H(i) hypothese for i ≤ n-1 are rejected;

4. If not, then H(n-2) is analysed with the significance level π/3 and so on

The Simes-Hochberg correction procedure is more powerful than the Holm method, but it can be used when 

the individual tests are independent of each other. The Holm method does not have such a limitation.
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FWER – stepwise methods

i 1 2 3 4 5 6 7 8 9 10

p(i) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350
𝜋𝜋

𝑁𝑁 − 𝑖𝑖 + 1
0.0050 0.0056 0.0063 0.0071 0.0083 0.0100 0.0125 0.0167 0.0250 0.0500

Required error level π = 0.05. 
1. Simes-Hochberg method: we start from p(n); we accept the null

hypothesis H(i) if p(i) > π/(n-i+1)
2. For our data it means i ≥ 7. 
3. Finally we reject H(1)…H(6).
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FWER – stepwise methods

• The stepwise correction method proposed by Hommel (1989) is slightly more 

complicated but does not reduce as much as the other test power.

• Hypotheses for which the value of p is less than or equal to π/k are rejected, 

where

ijdlajinpk i
j

i
,...,1  )(max =>+−= π
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FWER – stepwise methods

i j j/i (π = 0.05)* j/i

1 1 1 0.05 p(10) > 0.05

2 1; 2 0.5; 1 0.025; 0.05 p(9) > 0.025; p(10) > 0.05

3 1; 2; 3 0.33; 0.67; 1 0.0167; 0.033; 0.05 p(8) > 0.0167; p(9) > 0.033; p(10) > 0.05

4 1; 2; 3; 4 0.25; 0.5; 0.75; 1 0.0125; 0.025; 0.0375; 0.05
p(7) > 0.0125; p(8)=0.025; p(9) > 0.0375; 

p(10) > 0.05

i 1 2 3 4 5 6 7 8 9 10

p(i) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350

Calculations carried out by the Hommel method give the value of the coefficient k = 3, so for a single test we 
use the level α = 0.05 / 3 = 0.0167. 
We reject the hypotheses H(1), ..., H(6) because p(i) < 0.0167.
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FDR (false-discovery-rate)

• The FDR is defined as the expected value of the ratio of false positive (FP) results in the 

positive (R) group. The authors differ only in the definition of this indicator for the case 

when R = 0. Benjamini and Hochberg (1995) propose to take the value 0.

• Storey (2002) proposes to set the indicator only when R> 0. Then

)0Pr(0 >







>= RR

R
FPEFDR









>= 0R

R
FPEpFDR
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FDR

Benjamini and Hochberg procedure.

The steps of the algorithm are as follows:

• Sort the p values of individual tests from the smallest to the highest value p(1) ≤

p(2) ≤ ... ≤ p(n) and denote by H(i) the hypothesis associated with the value of 

p(i).

• Rejection of null H (i) hypotheses such that

guarantees

𝑝𝑝(𝑖𝑖) ≤
𝑖𝑖𝑖𝑖
𝑛𝑛

𝐹𝐹𝐹𝐹𝐹𝐹 ≤
𝑛𝑛0𝜋𝜋
𝑁𝑁

≤ 𝜋𝜋
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FDR

Assuming FDR = 0.05 for Benjamini-Hochberg method, we reject the 

hypotheses H(1), ..., H(8)

i 1 2 3 4 5 6 7 8 9 10

p(i) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350
𝑖𝑖𝜋𝜋
𝑛𝑛

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑝𝑝(𝑖𝑖) ⋅ 𝑛𝑛𝑖𝑖
0.0020

*10 = 
0.020

0.0045
*10/2 = 
0.0225

0.0060
*10/3 = 
0.020

0.0080
*10/4 = 
0.020

0.0085
*10/5 = 
0.017

0.0090
*10/6 = 
0.015

0.0175*
10/7 = 
0.025

0.0250
*10/8 = 
0.0313

0.1055*
10/9 = 
0.1172

0.5350*
10/10 = 
0.5350
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CASE B: A LOT OF OBSERVATIONS 
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Mass spectrometry imaging (MSI)

• Over the last few years, mass spectrometry MS techniques have undergone 
important improvements, enabling the exploration of proteins along a wide 
range of molecular weights in biological samples.

• Mass spectrometers have been a revolution to the field of proteomics, 
allowing the researchers to build "signatures" or proteomic patterns specific 
to different conditions or pathological states. 
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Mass spectrometry imaging (MSI)

• The application of MALDI-MSI in cancer research allows for the spatial 
identification of molecular profiles and their heterogeneity within the 
tumour, but leads to the creation of highly complicated datasets of great 
volume.

Schwamborn, Kristina; Caprioli, Richard M: Molecular maging by mass spectrometry – looking beyond classical
histology. NATURE REVIEWS CANCER, 10(9):639-646, Sep. 2010
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Mass spectrometry imaging (MSI)
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Mass spectrometry imaging (MSI)

• ~ 100,000 mass channels per spectrum
• ~ 10,000 spectra per sample.
• ~ 2 billion numerical values per sample. 
• Raw data ~ 8 GB per one sample.

Dimensionality reduction is needed
From dimensionality reduction technique we require to remove the data 
redundancy as much as possible and to loose the crucial information as less 
as possible. Gaussian mixture modelling (GMM) of the MALDI spectrum allows
for efficient feature extraction (peak picking) in MSI data. 

8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800

0

100

200

300

400

500

600

700

800

m/z

1. Polanski A, Marczyk M, Pietrowska M, Widlak P, Polanska J: Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass 
Spectrometry. Plos ONE, 2015, 10(7): e0134256

2. Polanski A, Marczyk M, Pietrowska M, Widlak P, Polanska J: Initializing EM algorithm for univariate Gaussian, multi-component, heteroscedastic mixture 
models by dynamic programming partitions, International Journal of Computational Methods, 2018, 15(3): 1850012 



Silesian University
of Technology

Example

109,568 mass channels ranged 
from 800 ÷ 3,500 Da
3 tissue samples
30,157 mass spectra
11,551 from the cancer region
1,535 from the healthy epithelium
6,216 Gaussian components for 
the complete model
2435 features in the final model



Silesian University
of Technology

Statistical testing

Cancer tissue versus healthy epithelium – signature identification

• Nonparametric Mann-Whitney U test : p-value ≤ 0.05; n1 = 2386 (97.99%)
• Bonferroni correction: p-value ≤ 0.05/2435 = 0.00002; n2 = 2316 (95.11%)

Is p-value enough?
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Motivation
• „Statistical significance is the least interesting thing 

about the results. You should describe the results in terms 
of measures of magnitude – not just, does a treatment 
affect people, but how much does it affect them.”

• Gene V. Glass (born June 19, 1940) - an American statistician
and researcher working in educational psychology and the 
social sciences who introduced the term "meta-analysis" and 
illustrated its first use in his presidential address to the 
American Educational Research Association in San Francisco 
in April, 1976. 
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Why p-value is not enough?

• P-value answers the question whether an effect exists, not how great it 

is.

• The p-value directly depends on the size of the sample.

• With a sufficiently large sample, the statistical test will almost always 

indicate a significant difference, as long as these differences are not equal 

to zero. Hence, very small differences, even if significant, will be irrelevant.
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Example
• 𝜇𝜇1 = 10, 𝜇𝜇2 = 11, 𝜎𝜎1 = 𝜎𝜎2 = 2

• 𝐻𝐻0: 𝜇𝜇1= 𝜇𝜇2 𝐻𝐻1: 𝜇𝜇1 ≠ 𝜇𝜇2

• 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛 = 10
• 𝑥𝑥1 = 10. 2; 𝑥𝑥2 = 11.1;
• 𝑠𝑠1 = 1.95; 𝑠𝑠2 = 2.3;

• 𝑠𝑠 = 𝑠𝑠12+𝑠𝑠22

2
= 2.13

• 𝑡𝑡1 = 𝑥𝑥1−𝑥𝑥2
𝑠𝑠2
𝑛𝑛+

𝑠𝑠2
𝑛𝑛

= 10.2−11.1
2.13 2/10

= −0.9448 𝑝𝑝1 = 0.3573
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Example
• 𝜇𝜇1 = 10, 𝜇𝜇2 = 11, 𝜎𝜎1 = 𝜎𝜎2 = 2

• 𝐻𝐻0: 𝜇𝜇1= 𝜇𝜇2 𝐻𝐻1: 𝜇𝜇1 ≠ 𝜇𝜇2

• 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛 = 50
• 𝑥𝑥1 = 10. 2; 𝑥𝑥2 = 11.1;
• 𝑠𝑠1 = 1.95; 𝑠𝑠2 = 2.3;

• 𝑠𝑠 = 𝑠𝑠12+𝑠𝑠22

2
= 2.13

• 𝑡𝑡2 = 𝑥𝑥1−𝑥𝑥2

𝑠𝑠� 2
𝑛𝑛

= 10.2−11.1
2.13 2/50

= −2.1127 𝑝𝑝2 = 0.0489
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Measure of magnitude

• Effect size - a quantitative measure of the strength of a phenomenon 

calculated on the basis of data;

• The measure of how great the effect of one variable exerts on the other 

variable;

• The effect size metric must be independent of the sample size.
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Effect size - definition

• Jacob Cohen defined the concept of the magnitude of 
the effect as a degree to which the phenomenon exists.

• Cohen’s d is defined as the difference between means 
divided by the standard deviation in the sample for two 
independent samples of the same size and equal but 
unknown variances.

𝑑𝑑 =
𝑥𝑥1 − 𝑥𝑥2

(𝑠𝑠12 + 𝑠𝑠22)/2
• At the moment there are about 100 different measures of 

the size of the effect.

Jacob Cohen: Statistical Power Analysis for the Behavioral 
Sciences, Routledge, 1988

𝑡𝑡 =
𝑥𝑥1 − 𝑥𝑥2

(𝑠𝑠12 + 𝑠𝑠22)/(2𝑛𝑛)
→ 𝑑𝑑 =

𝑡𝑡
𝑛𝑛
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How do we interpret Cohen's d?

• With a Cohen's d of 0.2, ~58% of the 
treatment group will be above the 
mean of the control group (Cohen's 
U3), 92% of the two groups will 
overlap, and there is a 56% chance 
that a person picked at random from 
the treatment group will have a 
higher score than a person picked at 
random from the control group 
(probability of superiority).

http://rpsychologist.com/d3/cohend/
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How do we interpret Cohen's d?

% of treatment above
the control mean

% chance that a person picked at random from the 
treatment group will have a higher score than a person 
picked at random from the control group 
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How do we interpret Cohen's d?
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How do we interpret Cohen's d?

Effect size (d-value)
Cohen’s U3 (% of treatment

above the control mean)
% of non-overlap

0 50 0

0.2 58 15

0.5 69 33

0.8 79 47

1.0 84 55

1.5 93 71

2.0 97 81

3.0 99.9 87
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Effect size

Depending on the type of research, the effect size metrics can be divided into 
two groups:

• Indicating differences between groups (d family): risk difference, risk 
ratio, odds ratio, Cohen's d, Glass's delta, Hedges' g, the probability of 
superiority, ω2;

• Estimating measure of similarity between variables (r family): the 
correlation coefficient r, R2, Spearman's rho, Kendall's tau, phi coefficient, 
Cramer's V, Cohen's f, η2
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Cohen’s d - one-sample and paired tests

• For a one-sample t-test Cohen's d for n subjects in the group. 

𝑑𝑑 =
𝑥̅𝑥 − 𝑥𝑥0
𝑠𝑠

=
𝑡𝑡
𝑛𝑛

• In a paired t-test, Cohen's d equals (Rosenthal, 1991) 𝑑𝑑 = 𝑡𝑡
𝑛𝑛

• Dunlap et al. (1996) suggest using an alternative estimator

𝑑𝑑 = 𝑡𝑡 �
2(1 − 𝑟𝑟)

𝑛𝑛
for n subjects and a correlation r between the paired responses. 
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Hedge’s g – unequal sizes and roughly equal variances

• Cohen’s d relies on the average standard deviation (the denominator of 

equation) to standardize the measure of the ES; it assumes the groups 

having (roughly) equal size and variance. When deviation from this 

assumption is not negligible (e.g. one group doubles the other) it is possible 

to account for it using the Bessel’s correction for the biased estimation of 

sample standard deviation.

• This gives rise to the Hedge’s g, which is a standardized mean difference

corrected by the pooled weighted standard deviation.
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Hedge’s g – unequal sizes and roughly equal variances

• Hedge’s g is defined as the difference between means divided by the pooled
standard deviation in the sample:

𝑔𝑔 = |𝑥𝑥1−𝑥𝑥2|
𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (𝑛𝑛1−1)∗𝑠𝑠12+(𝑛𝑛2−1)∗𝑠𝑠22

𝑛𝑛1+𝑛𝑛2−2

for independent samples.
• Hedge’s g shall be used in case of the small unequal sample sizes and/or

slightly unequal variances. 
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Glass’s Δ – treatment group versus control

• A particular case of ES estimation involves experiments in which one of the 

two groups acts as a control. 

• In that we presume that any measure on control is untainted by the effect, 

we can use its standard deviation to standardize the difference between 

averages in order to minimize the bias, as it is done in the Glass’s Δ:

∆=
|𝑥𝑥1 − 𝑥𝑥2|
𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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Interpretation of the effect size
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Example - MSI

Effect size Number of features Min p-value

Small [0.2, 0.5) 1771 2e-75

Medium [0.5, 0.8) 116 5e-183

Large [0.8, 1.3) 1 5e-194

Huge ≥ 1.3 0
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One-way ANOVA

• It is possible to extend the framework of difference family also to more than 

two groups, correcting the overall difference (difference of each observation

from the average of all observations) by the number of groups considered. 

• Under a formal point of view this corresponds to the omnibus effect of a 1 

factor analysis of variance design with fixed effect (One-way ANOVA). 
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One-way ANOVA – η2

• For a one-way analysis of variance, expresses the proportion of the total 

variance that can be assigned to an independent variable ranging from 0 to 1.

𝜂𝜂2 =
𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=
𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Effect size 𝜂𝜂2

Small 0.01

Medium 0.06

Large 0.14
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One-way ANOVA – ε2 and ω2

• η2 was developed as a descriptive index while ε2 and ω2 are intended for 

inferential purposes and are constructed by substituting the variance

component parameters of η2 with its bias-corrected sample estimators.  

ε2 =
𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑘𝑘 − 1
𝑁𝑁 − 𝑘𝑘

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Okada, K. (2013). Is omega squared less biased? A comparison of three major effect size indices in one-way 
ANOVA. Behaviormetrika, 40(2), 129-147.

Effect size 𝜂𝜂2

Small 0.01

Medium 0.06

Large 0.14

ω2 =
𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟 −

𝑘𝑘 − 1
𝑁𝑁 − 𝑘𝑘 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/(𝑁𝑁 − 𝑘𝑘)
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Linear correlation – Pearson’s r

• In the association-based family the effect is measured as the size of 

variation between two (or more) variables observed in the same or in several 

different samples. Within this family it is possible to do a further distinction, 

based on the way the variability is described.

• In the first sub-family, variability is shown as a joint variation of the variables 

considered. Under a formal point of view it is nothing but the concept which 

resides in the Pearson’s product moment correlation coefficient, which is 

indeed the progenitor of this group.
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Linear correlation – Pearson’s r



Silesian University
of Technology

Nonparametric significance tests

For Mann-Whitney U test the effect size is measured by rank biserial

correlation coefficient. 

The most popular Wendt’s formula is as follows:

𝑟𝑟𝑏𝑏𝑏𝑏 = 1 − ⁄2𝑈𝑈 (𝑛𝑛1 � 𝑛𝑛2)

where U stands for Mann-Whitney U statistics (in the case of two-sided test 

𝑈𝑈 = min(𝑈𝑈1,𝑈𝑈2)). Effect size Small Medium Large Very large
rbc 0.10 0.30 0.50 0.70
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Nonlinear association

• When a nonlinear association is thought to be present, or the continuous 

variable were discretized into ranks, it is possible to use the Spearman’s 

rho (ρ) instead.

• Alternatively, for those variable naturally nominal, if a two-by-two (2 x 2) 

table is used, it is possible to calculate the ES through the coefficient phi. 

• In case of unequal number of rows and columns, the Cramer’s V can be 

used, in which a correction factor for the unequal ranks is used, similarly to

what is done with the difference family.
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Binary association – Pearsons’ phi

• Pearson’s correlation coefficient for binary data, Φ, is an effect size measure 
for the 2x2 table given by

• With the thresholds proposed by Cohen

Φ =
𝑎𝑎 − 𝑛𝑛1𝑚𝑚1

𝑛𝑛1𝑚𝑚1𝑛𝑛0𝑚𝑚0

Effect size Small Medium Large
Pearson’s Φ 0.10 0.30 0.50

Y0 Y1

X0 a b n0

X1 c d n1

m0 m1 n
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Nominal association - Cramér's V
• It is used for contingency tables to measure the correlation for data 

consisting of two categorical variables that have two or more than two 
levels. It ranges from 0 to 1. 

Hays, W. L. 1981. Statistics for the social sciences, 3rd ed. New York: Holt, Rinehart, and Winston
Cohen, Jacob (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge.

m-1= 
min(r-1,c-1) Small Medium Large

1 0.10 0.30 0.50

2 0.07 0.21 0.35

3 0.06 0.17 0.29

𝑉𝑉 =
𝜒𝜒2

𝑛𝑛(𝑚𝑚 − 1)

χ2 = �
𝑖𝑖,𝑗𝑗

(𝑛𝑛𝑖𝑖𝑖𝑖 −
𝑟𝑟𝑖𝑖 ∗ 𝑐𝑐𝑗𝑗
𝑛𝑛 )2

𝑟𝑟𝑖𝑖 ∗ 𝑐𝑐𝑗𝑗
𝑛𝑛

Y0 Y1

X0 n11 n12 r1

X1 n21 n22 r2

c1 c2 n
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2x2 contingency tables

• The odds ratio (OR) can be regarded as a peculiar kind of ES measure 
because is suits both 2 x 2 contingency tables as well as non-linear 
regression models like logistic regression. 

• In general, OR can be tought as a special kind of association family ES for 
dicothomous (binary) variables. The OR represents the likelihood that an
event occurs due to a certain factor against the probability that it arises just 
by chance (that is when the factor is absent).
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Odds ratio

• For 2 x 2 tables the OR can be easily calculated using the cross product of 
cells frequency. OR can be also estimated by means of logistic regression.

for logistic regression

Y0 Y1

X0 a b n0

X1 c d n1

m0 m1 n

Effect size for balanced design Small Medium Large

OR (2x2 table) by Cohen 1.49 3.45 9.0



Silesian University
of Technology

Relative risk and risk difference

• Let
p1 = risk of disease among Group 1 (exposed)
p2 = risk of disease among Group 2 (unexposed)

• Then it is reasonable to estimate

𝑅𝑅𝑅𝑅 = 𝑝̂𝑝1 − 𝑝̂𝑝2

𝑅𝑅𝑅𝑅 =
𝑝̂𝑝1
𝑝̂𝑝2

𝑝̂𝑝1 =
𝑎𝑎
𝑛𝑛0

=
𝑎𝑎

𝑎𝑎 + 𝑏𝑏

𝑝̂𝑝2 =
𝑐𝑐
𝑛𝑛1

=
𝑐𝑐

𝑐𝑐 + 𝑑𝑑
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Risk difference for 2x2 tables

• The effect size mesure h is defined as a difference between the arcsine 
transformation values of proportions p1 and p2: ℎ = arcsin 𝑝𝑝1 −
arcsin 𝑝𝑝2 .

• If we restrict ourselves to the part of the proportion p scale between 0.05 
and 0.95, the range of RD is tolerably small. Thus, we do not have to pay a 
large price in consistency of interpretation of effect size h in terms of  p1 – 
p2. 

Effect size Small Medium Large
Difference in 

arcsines 0.20 0.50 0.80
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Risk ratio (relative risk) for 2x2 table

• Assuming allocation ratio m1/N as ∆ equal to 0.5 (balanced design) 
recommendations for corrected a for small (a=0.1), medium (a=0.3), and 
large (a=0.5) effect size are:

Risk measure For particular Φ threshold a and allocation
ratio ∆

Relative effect (for ∆=0.5)

Relative risk, odds ratio (rare
events), hazard ratio, incidence
ratio, standardized mortality ratio

𝑅𝑅𝑅𝑅𝑎𝑎 = 1 +
𝑎𝑎

(1 − 𝑎𝑎)∆

Small: 1.22
Medium: 1.86
Large: 3.0

Odds ratio (no-rare events)
𝑂𝑂𝑂𝑂𝑎𝑎 = 1 −

l𝑛𝑛 1 − ∆ 1 − 𝑎𝑎
∆ 1 − 𝑎𝑎 + 𝑎𝑎

(𝑅𝑅𝑅𝑅𝑎𝑎 − 1)
Small: 1.36
Medium: 2.38
Large:4.70

Jake Olivier, Warren L. May & Melanie L. Bell (2017) Relative Effect Sizes for Measures of Risk. Communications in 
Statistics - Theory and Methods, 46(14):6774-6781
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Example – OR
• During a 5-year study, among the 9 trials in the analysis, 50,868 subjects were 

treated with aspirin and 49,170 received placebo or control. More than 22,000 
patients identified the association of aspirin with a decreased number of 
myocardial infractions (MI). 
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Example – OR

• The outcome of the study: OR=0.813 (1/OR=1.23 for the „risk” factor) p-value=0.042. For 
allocation ∆=50,868/(50,868+49,170)=50.85% the corrected small effect threshold (a=0.1) 
equals

𝑅𝑅𝑅𝑅0.1 = 1 +
0.1

1 − 0.1 0.5085
= 1.2185

𝑂𝑂𝑂𝑂0.1 = 1 −
l𝑛𝑛 1 − 0.5085 1 − 0.1

0.5085 1 − 0.1 + 0.1
1.2185 − 1 = 1 −

l𝑛𝑛 0.4424
0.5577

0.2185 = 1.3195

• Since the obtained risk factor OR = 1
0.813

= 1.23 < OR0.1 suggests very small effect size, the
recommendation to use aspirin for preventive purposes was discontinued. Further 
research indicated an even lower amount of effect.

Alfred A. Bartolucci, Michal Tendera, George Howard, Meta-Analysis of Multiple Primary Prevention Trials of 
Cardiovascular Events Using Aspirin, The American Journal of Cardiology, 2011, 107(12):1796-1801
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CASE C: EXPERIMENTAL VALIDATION  
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Problem formulation

Goal: Compare the results of the different analyses, which may be dependent 
or independent designs. 
One of the options is p-value integration.

Silesian University of 
Technology

Primary experiment (#1) Validation experiment (#2)

Fusion of the test results
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What is a p-value?

• The probability that the phenomenon observed in some sample 
measurements could occur by chance, due to random variability of the 
samples, in a situation where such a phenomenon does not occur at all in the 
population.

or
• The probability, calculated under the assumption that H0 is true, that the 

test statistic would be as extreme or more extreme than what is actually 
observed is called the p-value of the test.

P-value tells us on what level of significance (noted as 𝛼𝛼) the null hypothesis 
can be  rejected.Silesian University of 

Technology
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Types of statistical integration

• Direct / independent integration - the same experiment performed on a 

different set of data (we measure the same feature on an independent set of 

input data);

• Indirect / dependent integration - we use the same input data for another 

trial (we measure the same phenomenom by other means).

Silesian University of 
Technology



Silesian University
of Technology

INDEPENDENT VALIDATION  
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Select only those results that show a 
significant signal difference for both 
experiments at the assumed 
significance level.
It means we look for test results i 
that:

𝑝𝑝1,𝑖𝑖 ≤ 𝛼𝛼1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝2,𝑖𝑖 ≤ 𝛼𝛼2
Assuming α = 0.05, pair p1=0.049 and 
p2=0.049 is ok, while p1=0.049 and 
p2=0.051 is not ok.

Restricted approach

Silesian University of 
Technology log(p-value) experiment 1

lo
g(

p-
va

lu
e)

ex
pe

rim
en

t2

𝛼𝛼1

𝛼𝛼2
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Product approach

• We have two independently collected data sets (D1 and D2).
• For both data, the same trait was measured in a similar way (e.g. expression 

of the same gene, could be different platform).
• Statistical tests were performed and two p-values (p1 and p2) were obtained, 

one for each trait.
• The product method uses the multiplication of p1 and p2 to make the final 

conclusion.
• What critical value for p1p2 should be used for thresholding between 

validated and non-validated results?Silesian University of 
Technology
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p-value experiment 1
p-

va
lu

e
ex

pe
rim

en
t2

Product approach

Area with pint≤0.05 (limited by the 
white dotted line).
The restricted approach

Silesian University of 
Technology

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖

The heatmap of pint=p1p2
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Product approach – an issue

• Imagine you have data from 5 independent experiments. In each of them, a 
test was performed to investigate the same hypothesis.

• For each of them, the p-value was 0.5 (not significant at 0.05 significance
level).

• What is the product value?
0.55 = 0.03125 < 0.05

• We conclude that direct comparison of the p-value product the the original
signifance level is improper and can lead to false discoveries.Silesian University of 

Technology
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Why is that?

• If the null hypothesis is true, then the p-value can be described by a uniform  
distribution over the interval [0,1]. The product of p-values has no longer this 
property. Experiment 1 Experiment 2 Product
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Property 1: The logarithm of a uniformly distributed random variable follows 

the exponential distribution with λ=1.

Property 2: The sum of a number of values of 𝜒𝜒2 is itself distributed in the 𝜒𝜒2 

distribution with the appropriate number of degrees of freedom.

Property 3: The exponential distribution is approximately equal to the 𝜒𝜒2 

distribution with 2 degrees of freedom (d.f.) when λ=1/2.

How to solve the problem?

Statistical Methods For Research Workers by R.A. Fisher, 1932
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Fisher method

We start with calculation of the F statistics

𝐹𝐹 = −2 ln �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖 = −2�
𝑖𝑖=1

𝑘𝑘

𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖 ~𝜒𝜒(2𝑘𝑘)
2

and then the p-value is obtained from the proper 𝜒𝜒2 distribution.  
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Fisher method – our example

• Reminder – we have data from 5 independent experiments, in each of them, 
a test was performed to investigate the same hypothesis.

• For each of them, the p-value was 0.5 (not significant at 0.05 significance
level). What is the F-value?

𝐹𝐹 = −2 ln �
𝑖𝑖=1

5

0.5 = −2�
𝑖𝑖=1

5

𝑙𝑙𝑙𝑙 0.5 = 6.93 ~𝜒𝜒(10 𝑑𝑑.𝑓𝑓.)
2

𝑝𝑝 = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 6.93,10 = 0.7320
• It can be concluded that the Fisher method represents a more appropriate 

approach for direct integration of the p-value than the product approach..Silesian University of 
Technology
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Area with F-stat based integrated
p-value below 0.05 (limited by the 
white dotted line)
The restricted approach p-value experiment 1
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Silesian University of 
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Fisher method

𝐹𝐹 = −2 ln �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖 = −2�
𝑖𝑖=1

𝑘𝑘

𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖 ~𝜒𝜒(2𝑘𝑘)
2

The heatmap of F-stat based p-value
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• It would be inadvisable to employ Fisher's method in instances where the p-
values in question exhibit a significant degree of disparity.

Limitation

Silesian University of 
Technology

p1 = 0.01

p1 = 0.99

p1 = 0.001

p2 = 0.01 ⇒

p2 = 0.99 ⇒

p2 = 0.999⇒

p = 0.001

p = 0.9998

p = 0.0079
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General idea

inv(PDF)

Aggregation of 
test statistics

p-value 1 t1

Integrated  p-value

inv(PDF)
p-value 2 t2

PDF Probability Density Function

Transformation-based approach

Silesian University of 
Technology

𝑡̃𝑡
PDF
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It assumes test statistics follow approximatelly Gaussian distribution.
First step: 𝑝𝑝𝑖𝑖 → 𝑧𝑧𝑖𝑖 = 𝜙𝜙−1(𝑝𝑝𝑖𝑖)

Second step: 𝑍𝑍 = ∑𝑖𝑖=1
𝑘𝑘 𝑧𝑧𝑖𝑖
𝑘𝑘

~𝑁𝑁 0,1

Third step for one side test 
integrated p = Φ−1 𝑍𝑍

For two side tests use 𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧𝑖𝑖) instead
of 𝑧𝑧𝑖𝑖 and the following formula for p

integrated p = 2 � (1 − Φ−1 𝑍𝑍 )
p-value - experiment 1

p-
va

lu
e

-e
xp

er
im

en
t2

Stouffer method

Stouffer, S., DeVinney, L. & Suchmen, E. 1949. The American soldier: 
Adjustment during army life, vol. 1. Princeton University Press, US.
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Weighted Z-transform

• At the stage of Z-statistic aggregation, the weighted average is employed in 
lieu of the conventional arithmetic mean value.

𝑍𝑍 =
∑𝑖𝑖=1𝑘𝑘 𝑤𝑤𝑖𝑖 � 𝑧𝑧𝑖𝑖

∑𝑖𝑖=1𝑘𝑘 𝑤𝑤𝑖𝑖2

• There are a number of possible approaches to setting the weights. If each 
weight is equal to one, the method is that of Stouffer. 

• Liptak conducted a comprehensive comparative analysis of the various 
weighting techniques and recommends the particular approaches:

𝑤𝑤𝑖𝑖 = 𝑛𝑛𝑖𝑖 or 𝑤𝑤𝑖𝑖 = 1
𝑆𝑆𝑆𝑆𝑖𝑖

= 𝑛𝑛𝑖𝑖
𝑠𝑠𝑖𝑖

Liptak, T. (1958). On the combination of independent tests. Magyar Tud. 
Akad. Mat. Kutato Int. Kozl. 3: 171-197.
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𝑤𝑤 = 1 𝑤𝑤 = 𝑛𝑛 𝑤𝑤 =
1
𝑆𝑆𝐸𝐸𝑖𝑖

=
𝑛𝑛𝑖𝑖

Weighted z-transformation

Silesian University of 
Technology

𝑠𝑠𝑖𝑖
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DEPENDENT VALIDATION  
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Problem formulation
• The p-value integration methods are not solely employed for the consolidation 

of findings from primary and validation experiments.
• In many instances, the secondary experiment is conducted using the same 

dataset but with a different variable being measured. This could be the 
abundance of a particular protein fraction in MS/MS analyses, the expression of 
an another gene in transcriptomics, and so forth.

• It is frequently the case that these features are highly correlated (for example, 
as a result of the involvement of the same signalling pathway or the 
manifestation of the same protein). Consequently, the test results are not 
independent. 

• It is not possible to employ the aforementioned methods, as this would result in 
a biased outcome. 
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Some exemplary solutions
• Brown MB, A method for combining non-independent, one-sided tests  of 

significance. Biometrics, 1975, 31(4):987-992.

• Kost JT, McDermott MP, Combining dependent p-values. Statistics & Probability  

Letters 2002, 60(2):183-190

• Poole W, Gibbs DL, Shmulevich I, Bernard B, Knijnenburg TA, Combining

dependent P-values with an empirical adaptation of Brown’s

method, Bioinformatics, 2016, 32(17):i430–i436
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Take home message

1) When performing multiple tests, it is essential to choose a less 
conservative method, particularly when there are a large number of tests 
involved. Do not confuse the issues of multiple testing (HTS data) with 
those of multiple comparisons (ANOVA). 

2) The p-value causes problems for both too small and too large sample 
sizes. The p-value is useful, but it should be accompanied by the 
estimator of the effect size. Always look for the proper effect size 
measure to fit into your experimental design.

3) Data integration at the p-value level is an effective way to validate 
experiment results. It increases the power of statistical inference by 
indirectly increasing the population sample size.
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joanna.polanska@polsl.pl
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