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Abstract

This work is on a novel radiobiologal theory of cell survival after radiation of unspecified 
modality or quality. The analyzed biophysical model, the Padé linear-quadratic model, 
for cell surviving fractions and the related observable of clinical usefulness is equally 
applicable to photon beams, as well as to light (electrons) and heavy (atomic nuclei) 
charged particles of low, intermediate, or high energies. The presented formalism is 
valid for both the single cell and entire cell populations. The analyzed description can 
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be incorporated into any type of radiation delivery, including all fractionated treat-
ments ranging from the conventional (2 Gy per fraction, one fraction per day), through 
hyperfractionation (more than one smaller fraction per day) to hypofractionation 
(larger doses with shorter overall exposure time, as in stereotactic radiosurgery). The 
major clinical application of the proposed theory is envisaged to be in providing a 
better input to dose planning systems for radiotherapy, as expected from the clear 
biological meaning of the derived parameters. The main strength of the Padé linear-
quadratic model is in its foundation on the mechanistic description of radiation dam-
age through enzymatic repair systems governed by the Michaelis–Menten catalysis. 
It is from this latter origin, which passed the test of time in mainstream biochemistry, 
that the present theory derives its biomedical adequacy. This, in turn, yields a power-
ful outperformance of the standard linear-quadratic model, the current workhorse of 
radiobiological modeling for the purpose of radiotherapy, as amply illustrated in the 
present study.

1.  INTRODUCTION

Radiotherapy is multifaceted, since it relies upon interdisciplinary 
research in order to meet with success, which is the patient’s cure. Different 
radiation qualities or modalities (photons, charged particles, etc.), deposit 
their energies in the traversed tissue according to different depth-dose 
profiles. A typical Bragg peak is a remarkable example of such profiles for 
heavy ions with most energy delivered to the encountered targets, mainly 
near the very end the beam’s traversal. Electrons and photons deposit most 
of their energy close to the entrance to the tissue. This makes these radia-
tions unsuitable for treating deep-seated tumors. In sharp contrast, high-
energy heavy ions can be optimally conformed to the target location deep 
inside the patient’s body. Such a key feature is associated with negligibly 
small multiple scattering effects of heavy ions due to large masses of atomic 
nuclei relative to light electrons.

Nevertheless, irrespective of the existence of diametrically opposite 
dose-depth profiles, all these different radiation modalities produce cell sur-
vival curves of a similar kind, characterized by typical sigmoid shapes, as a 
function of the absorbed dose. Ionization density and linear energy transfer 
are larger for heavy ions than for X-rays. This is expected to be biologically 
expressed by the targeted cell in two distinct ways. Indeed, the so-called 
relative biological effectiveness is typically 2–3 times larger for heavy ions 
than that of X-rays. Yet, there are some other aspects of a less appreciable 
variation for different radiation qualities. For example, the numbers of 
double strand breaks of deoxyribo-nucleic acid (DNA) molecules could 
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be close to each other for heavy ions and X-rays under the comparable 
irradiation conditions.

It is of great importance for radiotherapy to have reliable predictions 
on tumor control and healthy tissue complications. This is where radio-
biological modeling comes into its full function to assist tailoring dose 
planning systems for individual treatments of patients in a manner which 
is as comprehensive as possible.1, 2 Biophysical models can, in principle, 
design dose distributions for each treated patient by taking into account 
different biological factors ranging from anatomical to physiological. As to 
the patient, the ultimate goal is to enhance survival and diminish toxicity 
to the normal tissues. This aim could be attained through several strategies. 
One of them is an improved understanding of the radiation-tissue inter-
actions on molecular, cellular, and tissue levels. Among other things, this 
would yield the ever needed amendments of the current dose planning sys-
tems. Another strategy is a better comprehension of the individual patient 
feedback from the administered dose, given that the same amount of the 
identical irradiation could have markedly different outcomes for different 
patients with the same type of cancer. These two strategies among others 
should be considered in concert to achieve the best outcome.

There are two major variabilities in radiation-tissue interactions. One 
is variability of dose in the irradiated volume. The other is variability of 
cell response. Both variabilities are multifaceted, ranging from some self-
evident to more intricate, hidden aspects. Dose varies through the irradi-
ated tissue due to the stochastic nature of collisions between the beam 
species and the targeted particles. This does not imply that dose variation 
is completely random. Certain non-stochastic factors can also influence 
dose variability, e.g., organ motion, some external settings, etc. Radiation 
imparts damage to both normal and tumorous cells. Tumor topology 
is highly complex due to intertwining of healthy with diseased tissue. 
Critical to the variability of cell responses is the key difference in the way 
normal and tumor cells cope with the same radiation insult. This variabil-
ity implies the existence of different interaction mechanisms of radiation 
with these two kinds of cells. Radically different proliferation rates repre-
sent the main cause of unequal mechanisms for healthy and tumor cells. 
The former have a controllable cell cycle, whereas the latter proliferate 
uncontrollably with time changing rates.

A key to the overall success of radiotherapy is cell repair of the 
imparted damage. Therefore, it is of critical importance to investigate vari-
ous repair mechanisms within the context of the mentioned variabilities 
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of interactions between the applied radiation and the targeted tissue. This 
problem is addressed in the present chapter by reference to some of the 
existing radiobiological models, such as the linear-quadratic (LQ) model3 
as well as from the viewpoint of a recently introduced Padé linear-qua-
dratic model (PLQ).4–6

The most salient feature of the three constant parameters {α, β, γ } 
from the PLQ model is their clear biological interpretation based 
upon chemical kinetics of the Michaelis–Menten7 mechanism for cell 
repair through enzyme-lesion catalysis. This automatically provides a cell 
surviving fraction SF(D) of universal validity at all absorbed doses D. 
Moreover, this biophysical model possesses the built-in correct asymp-
totic exponential inactivation modes at low and high doses, separated by 
a shoulder. Further, the passage from the intermediate shoulder region to 
both small and large doses occurs in a smooth manner through a typical 
rectangular hyperbola for the dose-modifying factor—the relative effective-
ness RE(D) = {1 + (β/α)D}/(1 + γ D). The main significance of this is 
to indicate that Barendsen’s concept8 of biologically effective dose (BED) 
of radiation is not connected to the total absorbed dose D by a simple 
relation BED = λD, with λ being a proportionality dimensionless constant 
(dose-independent). Rather, the cell response, mediated by the enzymatic 
repair of radiation damage, profoundly alters the physical dose D deposited 
to the tissue through a modifying factor M (D), in the name of the relative 
effectiveness M (D) = RE(D). This changes the said simple proportional-
ity relation to a more structured function BED(D) = D · M(D), which 
becomes linear in D at both low and high doses, as indeed is typical for 
most mammalian cells. Comparison with several representative sets of 
experimental data for cell surviving fractions is presented to assess the rela-
tive performance of the PLQ model and to challenge the LQ model, which 
is currently the workhorse of radiobiological modeling in radiotherapy.

2. � DOSE–EFFECT CURVE (RESPONSE CURVE OR CELL 
SURVIVING CURVE)

2.1  Poisson distribution of radiation events, mean lethal dose
Belonging to statistical phenomena, the distribution of events involving 
cell-radiation interactions fluctuates following the Poisson probability. This 
can be understood from the arguments which run as follows. On the one 
hand, particle tracks traversing a tissue are certain to cross at least some of the 
cell structures. On the other hand, randomness of radiation-cell interactions 
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implies that they are intrinsically uncertain, i.e., probabilistic. For example, 
single and double strand breaks (SSB, DSB) or any other type of lesions 
from interactions between the cell and radiation, can take place only with 
some probability. It is precisely this lack of certainty, which classifies such 
events as non-deterministic. Upon irradiation, the cell finds itself in a kind 
of “all-or-nothing” state, as being either alive or dead with respect to its 
clonogenic ability for proliferation. This naturally leads to the Bernoulli 
statistics of binary (dichotomous) events. When the number of these events 
is large, the Bernoulli distribution takes the form of the Poisson distribu-
tion. A particular case of this passage from the Bernoulli to the Poisson 
distribution is interesting to illustrate. In order to highlight this aspect, let 
us consider some m independent hits that are delivered to the same target. 
We could inquire about the probability π(m) that this target receives no hit. 
Being independent, each hit has the same probability 1/m to arrive at the 
same target. Conversely, the probability of missing this target is 1 − 1/m.  
Furthermore, the probability that all the m hits will miss the target is 
(1 − 1/m)m. This is precisely the sought probability π(m):

In the limit of large values of m, it follows:

This is a special case P(0) = e−1 of the more general Poisson law for the 
distribution of a large number m of specific events†:

Here, x is the average number of specific events. For m = 0 and x = 1, this 
expression is reduced to:

(1)π(m) =

(

1 −
1

m

)m

.

(2)lim
m→∞

π(m) = lim
m→∞

(

1 −
1

m

)m

=
1

e
≡ P(0).

† �The word specific is used to refer to a particular kind of the cell-radiation interaction, e.g., single or 
double ionization, excitation, etc.

(3)
P(m) =

xm

m!
e−x.

(4)
P(0) =

1

e
≈ 0. 367879, or,

P(0) reduced by 36. 7879% (e ≈ 2. 71828).
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The classical hit-target model for cell-radiation interaction assumes the 
Poisson distribution of m events, such as creation of lesions whose aver-
age number x is supposed to be directly proportional to the absorbed 
dose D:

and therefore,

In this model, the number of hits is equal to the number of events, m, and 
moreover each hit is assumed to lead to a cell inactivation by producing a 
lethal lesion (cell death). Thus, the probability of survival of a cell as a target 
is the chance P(0) of not being hit, i.e., when no hit takes place at all, m = 0.  
In the latter case, by setting x = 1:

it is possible to give the definition of the proportionality constant D0 in 
(5) by reference to (3). Namely, since x = 1 corresponds to D = D0, as 
per (7),

we can say that D0 is a particular dose D, which yields, on the average, 
one lethal event per target (x = 1). Due to this circumstance, D0 is usually 
termed the mean lethal dose. Moreover, according to (4) and (8), quantity D0 
is the dose at which the surviving fraction is reduced by 1/e ≈ 0. 367879, 
or equivalently, by 36.7879% ≈ 37%. Due to this circumstance, D0 is often 
called the “37% dose” and accordingly denoted by D37(= D0). Reciprocal 
1/D0 ≡ k0 is the measure of cell sensitivity to radiation and it is called either 
the inactivation constant or the radiosensitivity constant (or radiosensitivity, 
for short). By reference to the special name for dose D0, it is convenient to 
refer to k0 as the mean lethal radiosensitivity, because it is also associated with 
the 1/e reduction of the cell surviving fraction. Mathematically, 1/D0 is the 
final slope of the terminal (exponential) part of the cell survival curve at 
high doses, e−D/D0. Note that formally the same decay law or cell surviving 

(5)x =
D

D0

,

(6)P(m) =
1

m!

(

D

D0

)m

e−D/D0 .

(7)x = 1 =
D

D0

,

(8)P(0) =
{

e−D/D0
}

x=1,D=D0
= e−1,
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fraction applies to a single cell and to a cell population consisting initially 
of some N0 cells. Here, the surviving fraction SF(D) would be defined by 
N/N0, with the specification N/N0 = e−D/D0, where N is the number of 
the surviving cells after irradiation by dose D. In this case, D0 would represent 
the dose needed to deliver an average of one lethal event per cell in a total 
population of N0 cells.

The curve for the cell surviving fraction SF(D) plotted as a function of 
dose D is called the dose–effect curve or response curve. The latter name is 
used to indicate that SF(D) describes the response of the cell to irradiation. 
This response is the information about the number of cells that survived 
by absorbing a dose D. Such curves have different characteristics at low, 
intermediate, and high doses. They seem to decay exponentially at both 
low and high doses. However, their initial and final slopes are different for 
these two asymptotes when D → 0 and D → ∞, respectively. At relatively 
lower doses there is a so-called shoulder. There are three other quantifying 
characteristics of the dose–effect curves. These are the mean lethal dose D0,  
quasi-threshold dose Dq and the extrapolation number n.

2.2  Extrapolation number and quasi-threshold dose
A shoulder in the response curve SF(D) is situated in the low-dose 
region, where cell inactivation per unit dose is noticeably smaller than 
that at high doses. The passage from these two regions of low and high 
doses is anything but abrupt. Therefore, a transition dose for delinea-
tion of the precise extent of the shoulder cannot be sharply determined. 
Nevertheless, an approximate procedure could still be designed to obtain 
a reasonable estimate of a dose located near the transition point (thresh-
old) between the terminal part of the dose–effect curve and the shoulder 
region. For this reason, such a dose is called a threshold dose, or more 
appropriately, a quasi-threshold dose because of the said uncertainty. 
An alternative name for the same dose is the shoulder width or the 
quasi-width. Both names are associated with the symbol Dq. In order to 
determine Dq, we introduce the high-dose exponential tail or asymptote 
S∞

F (D) of SF(D) as:

or equivalently,

(9)S∞
F (D) ≡ eλ−D/D0 ,

(10)S∞
F (D) ≡ ne−D/D0 ,
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where λ is a positive constant connected to the extrapolation number n by 
the relation:

When this definition is linked to a cell survival curve versus dose, the value 
Dq is seen as the dose located at a point at which the tangent to S∞

F (D) 
crosses the horizontal line parallel to the abscissa D at the height of the 
ordinate reaching the maximal cell survival, SF(0) = 1:

In other words, Dq is the dose to which the terminating exponential region 
of SF(D) is back-extrapolated to the 100% survival level. Relation (12) 
represents the condition for isosurvival at which the same value of the cell 
surviving fraction is obtained for two different doses D = 0 and D = Dq:

or

In this case, isosurvival, as the identical surviving fraction at both D = 0 
and D = Dq is obtained if λ − Dq/D0 = 0, so that eλ−Dq/D0 = 1. Here, 1 
(unity) is the maximal survival at D = 0, signifying the 100% survival, as 
it ought to be for any form of SF(D). Therefore, the isosurvival condition 
λ − Dq/D0 = 0 from (13), or equivalently:

gives the shoulder quasi-width, or the quasi-threshold dose, Dq as:

If a shoulder is viewed as an indication of the existence of accumulation of 
sublethal damage, then, e.g., a wide shoulder width Dq would mean that the 
amount of repaired sublethal damage is large. The name extrapolation num-
ber stems from “extrapolating” the terminal, high-dose asymptote ne−D/D0 
of the survival curve SF(D) back to the zero dose (D = 0). The intercept 
of the asymptote ne−D/D0 and the ordinate gives the extrapolation number, 
{ne−D/D0}D=0 = n.

(11)λ = ln n > 0, n > 1.

(12)

{

Maximal surviving fraction
}

D=0

=
{

High dose asymptote of surviving fraction
}

D=Dq
.

(13)1 = eλ−Dq/D0

1 = ne−Dq/D0

}

(Isosurviving fractions).

(14)

ln 1 = 0 = λ −
Dq

D0

ln 1 = 0 = ln n −
Dq

D0

}

,

(15)Dq = D0 ln n.
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3.  THE LINEAR-QUADRATIC MODEL
3.1 � Biological effect, relative effectiveness, and 

biologically effective dose
The cell surviving fraction in the linear-quadratic model (LQ) is intro-
duced by:

or equivalently,

where E(LQ)
B  is the biological effect (BE):

This expression can be written in the following two alternative forms:

where ξ is the approximate expected number of lethal lesions:

The quantity BED(LQ) is the LQ-based biologically effective dose:

whereas the quantity RE(LQ) is the relative effectiveness (RE) from the LQ 
model:

The BED(LQ) and RE(LQ) are interconnected through the relationship:

(16)S
(LQ)
F (D) = e−αD−βD2

,

(17)S
(LQ)
F (D) = e−E

(LQ)
B (D),

(18)E
(LQ)
B ≡ − ln S

(LQ)
F (D) = αD + βD2.

(19)E
(LQ)
B = αBED(LQ),

(20)E
(LQ)
B = ξRE(LQ),

(21)ξ ≡ αD (Expected number of lethal lesions).

(22)BED(LQ) = D +
β

α
D2,

(23)RE(LQ) ≡ 1 +
β

α
D.

(24)BED(LQ) = D · RE(LQ).
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Thus, the effect E(LQ)
B

 can also be understood as being given by the product 
of the expected number of lesions αD and the relative effectiveness RE(LQ).

3.2  The Barendsen formula
The simple form (22) of BED(LQ) is attractive especially in fractionated 
radiotherapy, because only the ratio β/α is employed, but the separate 
values of α and β are not required. Based upon the LQ model, the ratios 
α/β are estimated to be about 3  Gy and 10 Gy for healthy and tumorous 
tissues, respectively. The specific numerical values for α/β can be fully 
meaningful only if they are provided by a mechanistically-based radio-
biological model which is universally valid at all doses of interest. However, 
the LQ model is a low-dose approximation. As a consequence, in order 
to cover all the needed doses, one might be required to perform several 
(say J ) separate fits to the given experimental data resulting in different 
sets of values {αj/βj}( j � J) for the selected J dose intervals. This has the 
drawback of yielding a dose-range dependence of the BED(LQ), which 
severely limits inter-comparisons of different patterns of radiation deliv-
ery in fractionated radiotherapy. Therefore, it would be desirable to have 
a model which would give the biologically effective dose applicable to all 
doses for the same quantifying parameters estimated by using all the avail-
able experimental data points. Such a feature would enable the extraction 
of the biologically effective dose from the reconstructed parameters that do 
not change when passing from one to another dose range. The occurrence 
that the mentioned ratios α/β are so different for tumorous and normal 
tissue is an indication of the existence of substantially different mechanisms 
by which these two types of tissues respond to irradiation. As stated in the 
Introduction, the main reason for this difference is in the cell proliferation 
which is uncontrolled (chaotic) in tumor, and well regulated by the cell 
cycle growth in normal tissue.

What made the LQ model clinically useful was precisely Barendsen’s8 
idea about linking the radiation dose with the ensuing biological effect. 
In general, irrespective of any particular model, this concept states that the 
biologically effective dose is equal to the product of the total dose D and a 
dose-modifying factor, which is the relative effectiveness:

(25)Biologically effective dose = {Total dose} ·
{

Modifying factor
}

,

(26)BED = D · RE.
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It is through the modifying factor, the RE, that a particular pattern 
of radiation delivery can be taken into account. This is especially impor-
tant for fractionated radiotherapy, where the RE can help improve the 
effectiveness of the specific dose-time schedule by means of which the 
total dose is administered. In searching for some plausible ways that could 
make the LQ model clinically applicable, Barendsen8 entered only the 
ratio β/α into the dose-dependent relative effectiveness RE(LQ), but not 
the individual parameters α and β. Because the quotients of the form β/α 
are tissue-specific parameters, quantity RE(LQ) = 1 + (β/α)D from (23) 
can express the differences in radiation effects for various tissues. In other 
words, RE(LQ) can be employed to investigate the differences in biologi-
cal effectiveness among various tissues as a consequence of alterations in 
the dose delivery patterns. Thus, since different tissue effects are associated 
with different values of the quotient β/α, it is possible to use Eq. (26) to 
evaluate alterations in the therapeutic ratio due to changes in fractionation. 
The therapeutic ratio can be improved by e.g., reducing dose per fraction, 
in which case there should be proportionally more sparing of the healthy 
(late reacting) than tumorous (early reacting) tissues. These considerations 
indicate that the LQ model can be used as a predictive model, when 
considering certain alternative radiation treatments aimed at maximiz-
ing tumorous cell kill effects, while simultaneously minimizing some of 
the adverse healthy-tissue effects (e.g., normal tissue complication rates). 
The Barendsen relation (26) is general, as it is not limited to fractionated 
radiotherapy. Rather, it can be used for an arbitrary kind of radiation 
treatment. Note that Barendsen8 originally coined a term “extrapolated 
response dose” (ERD) in (26). This was subsequently renamed by Fowler9 
to the “biologically effective dose,” or the BED, as a better terminology 
for Barendsen’s idea.

3.3 � Low- and high-dose asymptotes of biological  
effect and surviving fraction

The effect (18) in the LQ model has the following asymptotic behavior at 
infinitesimally small and infinitely large values of D:

(27)E
(LQ)
B −→

D→0
αD,

(28)E
(LQ)
B −→

D→∞
βD2,
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respectively. This gives the corresponding asymptotes for BED(LQ) as:

Using the asymptotes (29) and (30) for E(LQ)
B

, it follows that the survival 
curve given by S(LQ)

F (D) from (16) is mainly exponential and Gaussian at 
small and large values of D:

respectively. A stronger repair, with a significant ratio β/α, is seen in the 
plot of cell surviving fraction as a more pronounced shoulder due to the 
Gaussian with its quadratic term βD2, which yields a more curved func-
tion S(LQ)

F (D). For small β/α, cell kill prevails and S(LQ)
F (D) is less curvy 

because of the dominance of the purely exponential function. As such, the 
ratio β/α appears as a measure of the curvature of S(LQ)

F (D) and this influ-
ences the cell response to radiation. Moreover, the smaller β/α implies that 
the dose-response relationship will be less sensitive to fractionation when 
fractionated radiotherapy is applied. Conversely, the larger β/α means that 
radiation damage was accumulated to a sufficient level to produce various 
lesions in DNA molecules. In such a case of an elevated β/α, the repairing 
molecules are triggered more proactively, so that repair of repairable lesions 
can become a key factor in determining the overall biological response of 
the cell to radiation.

The number of lesions could be assumed to be proportional to D as 
indicated in (21). Therefore, the LQ-based effect E(LQ)

B = (αD)(1 + βD/α) 
from Eq. (18), interpreted as the yield of elementary lesions, is proportional 
to the product of the average number of primary lesions (∼D) and the 
average energy deposited around the lesions (∼ {1 + βD/α}). This can also 
be written as:

(29)BED(LQ) −→
D→0

D,

(30)BED(LQ) −→
D→∞

β

α
D2.

(31)S
(LQ)
F (D) −→

D→0
e−αD,

(32)S
(LQ)
F (D) −→

D→∞
e−βD2

,

(33)E
(LQ)
B = βD(ζ + D) = βD (zD + D) ,



Mechanistic Repair-Based Padé Linear-Quadratic Model 419

where,

Parameter ζ (or zD ≡ z̄D) is a microdosimetric quantity called the “dose-
averaged” specific energy, which is given in terms of a sequence of incre-
ments of the specific energy z associated with single events:

where z̄F ≡ zF is the “frequency-averaged” specific energy.‡ The term “fre-
quency” refers to the frequency of occurrence of single events in a given 
volume. Quantity f1(z)dz is the probability distribution in z, where the 
subscript “1” refers to single events alone. Event distributions appear in the 
analysis because ionizing collisions are random and, therefore, the energy 
deposited in the tissue by such collisions represents a stochastic quantity or 
variable. In the microdosimetric formalism, the average number of events 
N̄  at a fixed dose D is given by N̄ = ⌈D/zF⌉, where ⌈r⌉ is the ceiling symbol 
which denotes the largest integer obtained by rounding up the number r, 
which can be a rational or any other real number or a real value of any 
function.

4.  THE PADÉ LINEAR-QUADRATIC MODEL
4.1  Differentiation between physical and biological doses

As mentioned, the two most salient aspects of the cell surviving fraction, 
SF(D), are the direct cell kill and cell repair. They can be simultaneously 
taken into account by introducing a biological dose DB to be determined 
for the given physical, single radiation dose D. The sought dose DB can be 
found from the Poisson statistics. In the context of radiation damage, the 
targeted cell is certain to survive if it receives no dose when the dose DB 
is expected to be absorbed. The chance for such an event to occur is given 
by the Poisson probability:

(34)ζ ≡ zD =
α

β
.

(35)zD ≡ ζ =
1

zF

∫ ∞

0

dz z2f1(z), zF =

∫ ∞

0

dz zf1(z),

‡ �In microdosimetry, a single absorbed dose D is defined as the expected value of the so-called specific 
energy z. On the other hand, specific energy z is the energy per unit mass per unit volume deposited 
per event per cell nucleus.

(36)P(0) = e−µDB,
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where µ is the repair constant in units of Gy−1. The constant µ � 0 is 
connected to the repair time τ during which the cell becomes effectively 
insensitive to any two consecutive hits (events, particle or ray traversals 
through the treated tissue) whenever they follow each other within the 
time interval �t, which is smaller than the recovery time (�t < τ). When 
the repair mechanism is activated, the delivered physical dose D is reduced 
and becomes only an apparent dose Dappar. On the other hand, the true 
dose Dtrue, which is actually received by the cell, represents the biological 
dose DB. In other words, repair effectively diminishes the values of D and 
transforms it to DB. The difference between D and DB is that the latter 
accounts for a correction due to the missed/wasted hits during the time 
lag �t < τ whenever τ > 0. Such a discrepancy between D and DB can be 
modeled by the said Poisson probability P(0). This settles the issue of the 
definition of DB = DB(D) for a fixed D as:

or explicitly,

where,

Employing the alternative notation:

we can rewrite (38) as:

It will also prove useful to introduce a repair degree by the following quo-
tient of doses:

The mechanism driving the pattern (38), or equivalently (41), which 
describes the cell recovery during the repair time τ consists of the following 
twofold pattern:

(37)DBP(0) = D,

(38)DBe−µDB = D,

(39)D � DB.

(40)Dappar ≡ D, Dtrue ≡ DB,

(41)Dtruee
−µDtrue = Dappar,

(42)Dappar � Dtrue.

(43)ν ≡
Dappar

Dtrue

=
D

DB

, 0 � ν � 1 (Cell repair measure or degree).



Mechanistic Repair-Based Padé Linear-Quadratic Model 421

(a)	What is usually considered to be a single absorbed dose D is modified 
by repair to become merely an apparent dose Dappar, which is smaller 
than the true dose Dtrue, which is expected to be deposited to the sensi-
tive part of the cell.

(b)	A measure or degree of the cell repair is the quotient ν of Dappar and 
Dtrue from (43) as given by the Poisson probability (38) that the cell 
receives no dose when the dose Dtrue = DB is anticipated. This degree 
varies from 0 to 1 due to its coincidence with the Poisson probability 
(36) via ν = P(0) = e−µDtrue = e−µDB.
The inequality in (39) is evident from e.g., (41) where Dtrue has to 

be exponentially damped via Dtruee
−µDtrue to become equal to Dappar as 

Dtruee
−µDtrue = Dappar. Stated equivalently, the apparent dose Dappar = D 

is smaller than its true counterpart Dtrue = DB because D ought to be 
enhanced by a positive factor 1/P(0) = eµDB in order to match the value 
DB through:

Parameter µ could be related to the microdosimetric dose-averaged specific 
energy zD = ζ from (34). In microdosimetric formalism, the probability of 
receiving no dose when the dose DB is expected is given by P(0) = e−DB/zD.  
This is the same Poisson formula which is in the formalism of this Section 
denoted by P(0) = e−µDB in (36). Therefore, the parameter µ from (36) or 
(38) could have a microdosimetric meaning, in which case it would repre-
sent the reciprocal of the dose average specific energy:

With this relation, a link to the parameters α and β from the LQ model can 
readily be made. Parameter zD, which appears in the second moment of the 
dose-averaged specific energy has already been identified in dosimetry as 
zD = α/β and, therefore:

It is important to formulate the following inverse dose problem for radio-
biological modeling:

(44)DeµDB = DB.

(45)µ =
1

zD

≡
1

ζ
.

(46)µ =
β

α
.

(47)
Given the physical dose D applied to the treated tissue,

what would be the biological dose DB received by

the irradiated cells when the cell repair system is active?







.
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Within the Poisson statistics (36), one of the possible answers to this ques-
tion is given by the exact real-valued solution DB of the transcendental 
equation (38).

If DB were known, the dose which was applied to the tissue could 
be retrieved by a direct computation of the so-called Ricker function, 
DBe−µDB. Then the inverse Ricker function would give D. In reality, 
however, the biological dose DB is unknown, but could nevertheless be 
determined by finding the inverse Ricker function. Although the exact 
inverse Ricker function is known and can be used through the Lambert 
function,4, 10 in the present work we shall deal with a simpler and more  
instructive exposition. To this end, we shall derive an approximate solu-
tion for DB from the non-linear, transcendental equation (38) through 
the process of linearization, by using only the known simplest elementary 
functions. With this goal, we start from (44) where we use the series for the 
exponential eµDB as:

where the rhs converges for every value of µDB. A further simplification of 
the rhs of Eq. (45) can be deduced by assuming that the recovery time is 
short (τ ≪ 1 or µ ≪ 1) and that the dose D permits the relation µDB ≪ 1.  
In such a case, it is justified to retain e.g., only the first 2 terms of the series 
from (48), so that (44) becomes:

This implicit, linearized version of the non-linear Eq. (38) can be written 
more explicitly by collecting the unknown DB on the same side of the 
equation to yield:

The expression D/(1 − µD) from (50) is the diagonal Padé approximant 
(PA)11 to DB(D), as a quotient of two polynomials of the same first degree 
in variable D. This PA possesses an equivalent representation obtained by 
employing the binomial series:

(48)eµDB = 1 +
µDB

1!
+

(µDB)2

2!
+ · · · ,

(49)DB = DeµDB ≈ D(1 + µDB) (µDB small).

(50)DB ≈
D

1 − µD
(µDB small).

(51)DB ≈
D

1 − µD
= D{(1 + µD) + (µD)2 + · · · },
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which converges for µD < 1. If we keep only the first two terms within the 
square brackets from the rhs of Eq. (51), we will finally arrive at:

or equivalently, by reference to (39):

As discussed for the exact relation (38), we see that the corresponding 
approximation (52) also obeys the inequality D � DB from (39), since 
a non-negative term (µD2 � 0) must be added to D � 0 to obtain an 
approximate DB. Division of (52) by D or (53) by Dappar yields:

so that,

Using (46), the rhs of Eq. (54) can be identified as the relative effectiveness 
RE(LQ) from Eq. (23). Thus, the quantity RE(LQ) can equivalently be con-
ceived as the quotient DB/D of an approximate expression for the biologi-
cal dose Dtrue (or DB) and the apparent dose Dappar (or D):

The approximate formula for the effect EB related to (52) is now given by:

Therefore, the definition (46) permits a connection of Eqs. (52) and (57) 
with the LQ model via:

where E(LQ)
B  is defined in (18), and:

(52)DB ≈ D(1 + µD) (µD small),

(53)Dtrue = Dappar(1 + µDappar) (µDappar small).

(54)
DB

D
≈ 1 + µD,

(55)ν =
1

1 + µD
.

(56)RE(LQ) =
DB

D
.

(57)EB ≈ αDB ≈ αD + βD2.

(58)DB ≈ D
(LQ)
B , EB ≈ E

(LQ)
B ,

(59)D
(LQ)
B = D

(

1 +
β

α
D

)

.
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The binomial series (51) for DB can alternatively be obtained by solving 
the implicit, linearized equation (49) through iterations. The first iter-
ate is generated via the replacement of DB from the rhs of Eq. (49) by 
D(1 + µDB) so that DB ≈ D {1 + µ [D(1 + µDB)]}. If in the rhs of the 
latter equation, DB is written as D(1 + µDB), the second iterate follows, 
DB ≈ D(1 + µD + µ2D2 + µ3DB). The higher iterates within this pro-
cedure of self-substitutions shall yield the binomial series, which sums up 
to closed expression DB ≈ D/(1 − µD) for µD < 1 in agreement with 
Eq. (51).

The approximate solution (52) for DB is the sum of the linear (∼D) and 
quadratic (∼D2) terms. Without repair, all the impinging radiation quanta 
are absorbed by the targeted cell, so that:

and this goes for both (38) and (59). However, with repair (τ > 0, µ > 0), 
there would be some wasted radiation quanta, as if they were removed from 
the beam or annihilated in the traversed tissue and this gives the quadratic 
term ∼D2. Our derivation shows that the quadratic term ∼D2 is directly 
rooted in the cell repair mechanism and brought about by reconstruc-
tion of the unknown biological dose DB ≈ D

(LQ)
B

 from the given physical 
dose D. This gives the approximate answer (52) to the stated inverse dose 
problem (47). By reference to (59), it follows that the quantity BED(LQ) 
coincides with D(LQ)

B
:

In the present formulation of the LQ model, parameters α and β are  
associated in a distinct manner with the cell kill and cell repair per Gy−1 
and Gy−2, respectively. However, in the present derivation of the approxi-
mate effect E(LQ)

B
 from (18), these two parameters are correlated through 

the relationship (46). Thus, if µ were known, only α would be a free param-
eter when reconstructing E(LQ)

B
 from e.g., its least-square adjustment to the 

corresponding experimental data. Parameter µ = β/α is the measure of 
the deviation of the parabola αD + βD2 from the straight line αD plotted 
versus D as the abscissa. The higher the µ, the more parabolic the effect 
E

(LQ)
B

 and the more significant the repair βD2. Conversely, the lower the 
µ, the more straight line behavior of E(LQ)

B
 and the more pronounced the 

cell kill αD.
This derivation clearly demonstrates that the LQ model represents 

a low-dose approximation of a more general model,4 which solves the 

(60)DB = D, µ = 0 (τ = 0 : no repair),

(61)BED(LQ) = D
(LQ)
B .
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transcendental equation (38) exactly, rather than using the approximate 
solution (54), which is valid for small µD. More specifically, we employed 
the convergence radius µD < 1 in the result DB/D ≈ 1 + µD from (54). 
This latter low-dose restriction is due to the use of the binomial series 
for 1/(1 − µD), which is meaningful only for µD < 1. Retaining the first 
two terms in this series via 1/(1 − µD) ≈ 1 + µD leads straight to the 
LQ model. The binomial 1/(1 − µD) itself is the Padé approximant as a 
ratio of the simplest two polynomials of degree 0 and 1 in the numerator 
and denominator, respectively, according to 1/(1 − µD) = P0(D)/Q1(D), 
where P0(D) = 1 and Q1(D) = 1 − µD.

4.2 � Repair-mediated non-linear damping of linear direct  
cell kill mechanism

At larger values of D, experimental data for SF(D) usually exhibit an expo-
nential fall-off, SF(D) ∼ e−D/D0 = P(0), where D0 is the dose at which 
the surviving fraction is reduced by 1/e ≈ 0. 367879 or by 36. 7879%,  
as per (4). In other words, the final slope of most measured curves 
for cell surviving fractions is given by 1/D0. This is opposed to the 
LQ-type high-dose dominance of the Gaussian S

(LQ)
F (D) ∼ e−βD2 

from (32), which continues to bend and thus has no final slope. In 
the  LQ model, the initial slope, determined by the low-dose asymp-
tote S(LQ)

F (D) ∼ e−αD from (31), is given by α which is associated with 
single radiation events (single hits) to a sensitive part of the cell. Even in 
the  low-dose limit, the LQ model was seen to deviate from experimen-
tal data12 thus pointing to unreliable numerical values of the parameters 
α and β in the LQ-based cell surviving fraction S(LQ)

F (D). According 
to the above derivation, α is also present in β. The said drawbacks of 
the LQ model at both low- and high-dose asymptotic regions could 
partially be attributed to the assumption that the linear part ξ = αD 
is associated exclusively with lethal events as in the classical hit-target 
model. We shall relax this limitation and modify the term αD so as to 
allow for cell repair. In other words, as opposed to the hit-target model, 
where the direct hits (∼αD) describe irreparable lesions that cause cell 
death, we shall permit that even direct hits could be repaired. As dis-
cussed, this can be done by damping αD when the dose is progressively 
augmented. To this end, we shall modify the LQ model by introducing 
the repairable lesion ξB in lieu of ξ as:

(62)ξBeωξB ≡ ξ ∴ ξB � ξ ,
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where ω � 0 is a dimensionless repair-related constant. Here,

The inequality ξB � ξ from (62) is evident from the defining relation 
ξBeωξB = ξ, since ξB needs to be multiplied by a non-negative number 
eωξB�0 to be equalized to ξ. Moreover, biologically, the plus sign of ξB 
in the argument of the exponential in ξBeωξB from the lhs of Eq. (62) 
coheres with the fact that repair diminishes the number of expected lethal 
lesions from direct hits (single interaction of radiation with the cell). At 
this point of the analysis, it suffices to find an approximate solution of the 
transcendental equation (62). This can be done if in Eq. (62), rewritten as 
ξB = ξ e−ωξB, we replace the exponential e−ωξB by its first-order diagonal 
Padé approximant11 in variable ωξB/2 as:

This transforms the transcendental equation (62) into a quadratic equation 
for the unknown ξB:

where,

The roots of the quadratic equation (66) are:

where ξ+
B > 0 (physical) and ξ−

B < 0 (unphysical). We retain only the 
positive-definite root ξ+

B , which is re-labeled as ξ
(P)
B :

(63)
ξB = Expected number of repairable lesions from direct hits

ξ = Expected number of irreparable lesions from direct hits

}

,

(64)e−ωξB ≈
1 − ωξB/2

1 + ωξB/2
(Padé approximant for exponential).

(65)
1

2
ωξ2

B + QξB − ξ = 0,

(66)Q = 1 +
1

2
ωξ = 1 + γ D,

(67)γ =
1

2
ωα.

(68)ξ±
B =

Q

ω

(

−1 ±

√

1 +
2ωξ

Q2

)

,

(69)ξ+
B ≡ ξ

(P)
B .
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Next, the term (1 + 2ωξ/Q2)1/2 is expanded in a series with powers of 
2ωξ/Q2:

By keeping solely the first two terms, i.e., the terms from the curly brackets, 
and using (66), it follows:

In this way, Eqs. (68) and (69) yield the final result ξB ≈ ξ
(P)
B ≈ ξ/Q or:

The replacement of the term ξ by its Padé-equivalent ξ
(P)
B  yields the Padé 

Linear-Quadratic model, as denoted by PLQ, for the biological effect of 
radiation:

or equivalently,

The corresponding cell surviving fraction in the PLQ model reads as:

If parameter µ is chosen according to (46), we can cast Eqs. (74) and (75) 
into the forms:

(70)
(

1 +
2ωξ

Q2

)1/2

=

{

1 +
ωξ

Q2

}

+
3

8

(ωξ)2

Q4
+ · · · .

(71)
(

1 +
2ωξ

Q2

)1/2

≈ 1 +
ωξ

Q2
.

(72)ξB ≈ ξ
(P)
B ≈

ξ

1 + γ D
=

αD

1 + γ D
.

(73)E
(PLQ)
B ≡ ξ

(P)
B (1 + µD),

(74)E
(PLQ)
B =

αD

1 + γ D
(1 + µD).

(75)S
(PLQ)
F (D) ≡ e−E

(PLQ)
B .

(76)E
(PLQ)
B =

αD + βD2

1 + γ D
,

(77)S
(PLQ)
F (D) = e

−
αD+βD2

1+γ D .
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The numerator of the quotient from the rhs of Eq. (76) represents the effect 
in the LQ model, so that we can also write:

As per derivation of the PLQ model, there are two “repair ratios” Ŵβα and 
Ŵγα that can be introduced by:

in terms of which, the biological effect (76) can be rewritten as:

Quotient Ŵβα is a repair degree β/α, which gives the relative impor-
tance of the linear (D) and quadratic (D2), as also encountered in the LQ 
model, according to (59) and (61). The additional repair ratio Ŵγα in the 
PLQ model is a repair measure γ /α of the strength of some higher-order 
mechanisms appearing through all the powers of dose D that are implicitly 
present in (80) and could be made explicit by expanding the binomial 
1/(δ + ŴγαD) into its Macularin series. The quotient of Ŵβα and Ŵγα is 
useful, since it gives the degree of the departure of the PLQ from the LQ 
model:

This quantity is also the final slope of the dose–effect curve S(PLQ)
F (D),  

as will be discussed later on. The expression (73) for the effect E
(PLQ)
B

 
in the PLQ model was obtained in the two main steps: (i) derivation of 
the approximate biological dose DB = D(1 + µD) from (52), which by 
way of the definition µ = β/α from (46) coincides with the biologically 
effective dose BED(LQ) in the LQ model, DB = BED(LQ), as per (61), and 
(ii) replacement of the lethal (irreparable) lesions ξ = αD in the effect 
EB ≡ αDB = ξ(1 + µD) from (61) by the sublethal (repairable) lesion ξ

(P)
B  

via ξ =⇒ ξ
(P)
B = ξ/(1 + γ D) = (αD)/(1 + γ D). The net result of the steps 

(i) and (ii), through the product of ξ
(P)
B  and the relative effectiveness 1 + µD 

as ξ
(P)
B (1 + µD) represents the effect E

(PLQ)
B = (αD + βD2)/(1 + γ D) 

(78)E
(PLQ)
B =

E
(LQ)
B

1 + γ D
.

(79)Ŵβα =
β

α
, Ŵγα =

γ

α
,

(80)E
(PLQ)
B =

D + ŴβαD2

δ + ŴγαD
, δ =

1

α
.

(81)Ŵβγ =
Ŵβα

Ŵγα

=
β

γ
.
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from (73) in the PLQ model. This recapitulation through the said two steps 
(i) and (ii) illustrates the origin of the name “Padé + Linear-Quadratic” and 
the associated acronym PLQ for this new radio-biological model which has 
originally been introduced in our recent works.4–6

4.3  Initial slope, final slope, and extrapolation number
For the choice µ = β/α from (46), the low- and high-dose asymptotes of 
E

(PLQ)
B

 read as:

respectively. For brevity, the high-dose asymptote (83) is written to exhibit 
only the leading term (∼D), whereas the constant (∼D0) is ignored. As it 
stands, Eq. (76) is the para-diagonal Padé approximant with the numerator 
and denominator polynomial of the second- and first-degree, respectively 
in variable D.

The expression for E(PLQ)
B

 from (76) leads to the corresponding biologi-

cally effective dose BED(PLQ) in the PLQ model:

This can also be written in analogy with (24) as:

where RE(PLQ) is the relative effectiveness in the PLQ model:

Insertion of the asymptotes (82) and (83) for E(PLQ)
B

 into Eq. (84) yields:

(82)E
(PLQ)
B −→

D→0
αD,

(83)E
(PLQ)
B −→

D →∞

β

γ
D,

(84)BED(PLQ) ≡
E

(PLQ)
B

α
=

D + βD2/α

1 + γ D
.

(85)BED(PLQ) = D · RE(PLQ),

(86)RE(PLQ) =
1 + (β/α)D

1 + γ D
=

RE(LQ)

1 + γ D
.

(87)BED(PLQ) −→
D →0

D,

(88)
BED(PLQ) −→

D→∞

β

αγ
D.
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As expected, the PLQ and LQ models exhibit the same low-dose behav-
iors in (29) and (87), but differ substantially at high doses according to (30)  
and (88).

The behaviors (82) and (83) of E(PLQ)
B

 yield the following two asymp-
totes of S(PLQ)

F (D) at small and large values of D:

respectively. This gives the initial and final slopes si and sf , respectively, in 
the dose–effect curve from the PLQ model as:

In the high-dose asymptotes (90), only the leading term βD2 is retained in 
the numerator of the biological effect E

(PLQ)
B = (αD + βD2)/(1 + γ D). 

However, it is also useful to extrapolate the high-dose limit of the cell surviv-
ing curve back to the ordinate axis (D = 0). This would give the so-called 
extrapolation number n. Thus, alongside the same high-dose approximation 
for the denominator 1 + γ D ≈ γ D, which has already been made in (90), we 
shall now retain the full numerator αD + βD2 in (αD + βD2)/(1 + γ D) 
to arrive at:

so that,

(89)S
(PLQ)
F (D) −→

D →0
e−αD,

(90)S
(PLQ)
F (D) −→

D→∞
e−βD/γ ,

(91)PLQ : Initial slope : si = α, Final slope : sf =
β

γ
.

− ln S
(PLQ)
F (D) −→

D→∞

{

αD + βD2

1 + γ D
−

β

γ

}

+
β

γ
D

=

{

(αγ − β)D

γ (1 + γ D)

}

+
β

γ
D

−→
D→∞

{

(αγ − β)D

γ 2D

}

+
β

γ
D

=

{

αγ − β

γ 2

}

+
β

γ
D

(92)S
(PLQ)
F (D) −→

D→∞
e

β−αγ

γ 2 −
β
γ

D
.
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This can conveniently be rewritten as:

where the extrapolation number n is given by:

Thus, the extrapolation number is proportional to the difference �sfi 
between the final and initial slopes, ln n ∼ sf − si = �sfi. The extrapolation 
number n must be positive and this imposes the following condition:

At high doses, it might be useful to constrain the free parameter γ to the 
relationship:

in which case (90) can alternatively be written as:

With the selection (96), the extrapolation number n from (94) becomes:

where the restriction condition (95) is now specified as:

This positivity requirement (99) for the extrapolation number n > 0 
reflects the proper relationship between the initial (α) and final (1/D0) 
slopes when the third parameter γ in the PLQ model is not adjustable, but 
rather fixed via γ = βD0:

(93)
S

(PLQ)
F (D) −→

D→∞
ne

−
β
γ

D

ln S
(PLQ)
F (D) −→

D→∞
ln n −

β
γ

D







,

(94)
ln n =

β − αγ

γ 2

=
�sfi

γ
, �sfi = sf − si.

(95)ln n > 0 if β > αγ .

(96)γ = βD0,

(97)S
(PLQ)
B (D) −→

D→∞
e−D/D0 at γ = βD0.

(98)ln n =
1 − αD0

βD2
0

at γ = βD0,

(99)ln n > 0 if α <
1

D0

at γ = βD0.

(100)Initial slope (α) < Final slope (1/D0) at γ = βD0.
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We re-emphasize that when γ is constrained to the relation γ = βD0,  
the high-dose limit of the PLQ model becomes S

(PLQ)
F (D) ∼ e−D/D0, 

as required by the experimental data. Of course, any constraint imposed 
on one parameter inevitably introduces a bias into the estimates of the 
remaining parameters. However, irrespective of whether γ is pre-assigned 
to be of the form γ = βD0 or kept free, the other two parameters α and 
β are always mutually dependent, since by definition β = µα. Moreover, 
in view of (67) instead of γ, we could use ωα/2, where ω takes the role 
of an adjustable parameter. This shows that in the general case without 
resorting to (96), the third parameter ωα/2 in the PLQ model is connected 
to the direct cell kill component α. Overall, the unconstrained version of 
the PLQ model is negligibly more involved than the LQ model from the 
computational viewpoint due to the presence of merely one additional 
parameter γ or equivalently, ωα/2. The constrained variant of the PLQ 
model, with γ fixed by the prescription γ = βD0, has only two parameters 
α and β, since D0 can be considered as the input data to be read off from 
the final slope of the experimentally measured cell surviving fraction at 
larger values of D. In either case, the advantage of the PLQ over the LQ 
model is at least twofold:

•	 (A) a richer mathematical function with the underlying mechanisms 
and,

•	 (B) a smooth switch from the incorrect quadratic (Gaussian) to the cor-
rect (exponential) asymptote at high doses, as required by the measure-
ments.

4.4 � The Padé linear-quadratic model and the Michaelis–
Menten kinetics

Inserting (18) for E(LQ)
B

 into the numerator of E(PLQ)
B

 from the Padé quo-
tient (78), we can alternatively write the biological effect in the PLQ model 
as:

where,

(101)E
(PLQ)
B = v0(ζ + D) = v0(zD + D),

(102)v0 =
βD

1 + γ D
.
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In (101), use is made of the quantity ζ, or equivalently, zD from (34), where 
zD is the dose-averaged specific energy from microdosimetry.  The quantity 
v0 is velocity or rate, which is equivalent to the initial reaction velocity 
from the enzyme kinetics of Michaelis–Menten (MM)7 for the follow-
ing irreversible chemical reaction (enzyme catalysis) with formation and 
destruction of the enzyme-lesion complex:

Here [E], [L], [EL], and [R] are the concentrations of the free enzyme 
molecules, lesions (primarily DNA), enzyme-lesion complex and repaired 
lesions, respectively. Quantities k1 and k2 are the rate coefficients for forma-
tion and destruction/dissociation of the intermediate complex molecule 
[EL]. In this chemical reaction, the free enzyme molecule [E] binds the 
radiation damaged DNA molecule (a lesion [L]) into an intermediate 
and temporarily living unstable complex molecule [EL]. This compound 
facilitates the enzymatic synthesis of DNA. After completion of this inter-
mediate stage of the reaction, the complex [EL] decays, thus producing the 
repaired lesions [R] and enzymes [E] that are again free for further bindings 
with other lesions. As mentioned earlier in (21), the number of lesions is 
usually assumed to be proportional to dose D:

where κ could be taken as κ = k0 ≡ 1/D0 or as a constant of unit abso-
lute value (κ ≡ 1). When writing [L] = D in (104) and afterwards, it is 
understood that [L] = D ≡ 1 · D, where “1” takes care of the proper units 
in the passage from a dose to a molar concentration. This convention is 
done to avoid introducing a superfluous parameter only for the purpose of  
conversion of the units. In this way, Eq. (102) can equivalently be written as:

Using Eq. (104) and the definition:

we can cast expression (105) into its form used in the MM kinetics:

(103)
[E] + [L]−→

k1

[EL]−→
k2

[E] + [R].

(104)[L] ∼ D = κD ≡ D,

(105)v0 =
β[L]

1 + γ [L]
.

(106)KM ≡
1

γ
,

(107)
v0 =

vmax[L]

KM + [L]
,
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where vmax is the maximal velocity given by:

Velocities v0, and consequently, vmax are given in units Gy−1. On the other 
hand, in the original Michaelis–Menten velocity for irreversible reaction 
(103), we have:

where [E]0 is the initial concentration of enzymes (the number of enzymes 
at the onset of the reaction), which is assumed to be constant throughout 
and, therefore, equal to the total enzyme concentration [E] ≡ [E]tot at any 
subsequent time. Quantity KM is the Michaelis–Menten7 constant with the 
dimension of concentration. More specifically, this constant for irreversible 
variant (103) of the general MM enzyme catalysis, represents the concen-
tration of lesions ([L] ≈ KM) at which velocity v0 attains one half of vmax, 
as follows {v0}[L]≈KM ≈ vmax[L]/([L] + [L]) = vmax/2:

In the same approximation, the biological effect E(PLQ)
B

 becomes:

At small concentration of lesions, the reaction velocity v0 is reduced to:

where,

The use of Eqs. 106 and (108)–(110) permits connecting e.g., the final 
slope (β/γ ) in the PLQ model with the enzyme kinetic parameters as:

(108)vmax ≡
β

γ
.

(109)KM =
k2

k1

,

(110)vmax = k2[E]0,

(111)v0 ≈
vmax

2
at [L] ≈ KM.

(112)E
(PLQ)
B ≈

vmax + α

2
KM at [L] ≈ KM.

(113)v0 =
vmax[L]

KM (1 + [L]/KM)
≈

[L]/KM≪1
vmin,

(114)vmin =
vmax[L]

KM
.

(115)Final slope : Ŵβγ =
β

γ
= vmax = k2[E]0.
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A similar connection can also be deduced for the extrapolation number using 
Eq. (94) as follows:   ln n = (β − αγ )/γ 2 = (β/γ − α)/γ = (vmax − α)KM, 
so that:

Hence, the larger (the smaller) the product of the enzyme concentration 
[E]0 and the dissociation rate constant k2, the steeper (the shallower) the 
final slope of the dose–effect curve. This is correct, since more significant 
values of k2[E]0 would enhance the chance for a greater enzymatic activ-
ity with the ensuing larger concentration [R] of repaired lesions. Such 
an outcome should mitigate the influence of the direct cell kill mecha-
nism (αD) and, therefore, would increase cell survival, as manifested by 
a departure from the pure exponential bending e−αD in the dose–effect 
curve. Consequently, a shouldered cell surviving curve appears, as a sig-
nature of the enzymatic repair of radiation-induced lesions. This is also 
reflected in the repair ratio Ŵβα = β/α from (79), which can be rewritten 
in the form:

where the second repair ratio Ŵγα is equal to γ /α, according to (79). The 
larger values of β/α imply a more noticeable influence of repair. Expression 
(117) confirms this expectation through a direct proportionality between 
the quotient β/α and the enzyme concentration [E]0 available for repair. 
Moreover, the same ratio β/α is also directly proportional to the catalysis 
rate k2 and, thus, to the efficiency of the enzymatic repair system in con-
verting the radiation damage [L] to the repaired lesions [R] in the final 
reaction path [EL]−→

k2

[E] + [R], so that:

In the equivalence relation (118), the proportionality constant is Ŵγα, where 
Ŵγα = γ /α from (117). This constant is associated with linear and non-
linear contributions from all the powers that are inherent in the binomial 
(δ + ŴγαD)−1, as mentioned earlier.

Rewriting  (104)  as  E(PLQ)
B =(αD + βD2)/(1 + γ D)=(β/γ )(α/β + D)

× (1/γ + D) and using (106) and (108) for 1/γ = KM and β/γ = vmax, 

(116)Logarithm of the extrapolation number : ln n = (vmax − α)KM.

(117)Ŵβα =
β

α
= Ŵγα{k2[E]0},

(118)Ŵβα ∼ k2[E]0.
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respectively, we can equivalently express the biological effect (76) and the 
cell surviving fraction (77) in the Michaelis–Menten representation as:

and,

The connection among the three parameters {α, β, γ } with the equivalent 
triple {zD, vmax, KM} from the PLQ model is summarized as:

Overall, the MM rate constant KM and the maximal enzyme velocity vmax 
can be measured in standard enzyme experiments. Moreover, the initial (α) 
and final (vmax) slopes can be extracted from the experimental data for the 
given cell surviving curve and so could the extrapolation number n. Also, 
as soon as the triple {α, vmax, KM} becomes available, the extrapolation 
number can be obtained from Eq. (116). Thus, the basic elements of the 
dose–effect curve in the PLQ model are recapitulated via:

When parameter γ is pre-assigned as γ = βD0, by reference to (96), then 
according to (100) the final slope β/γ becomes 1/D0, so that:

This result (D0 ∼ 1/k2) shows that the mean lethal dose D0 is proportional 
to the reciprocal of rate constant k2 for enzyme-mediated creation of a 

(119)
E

(PLQ)
B = v0 (zD + [L])

=

(

vmax[L]

KM + [L]

)

(zD + [L]) ,

(120)
S

(PLQ)
F (D) = e−v0(zD+[L])

= e
−

(

vmax[L]
KM+[L]

)

(zD+[L])
.

zD = α
β
; Direct/Indirect mechanisms , (Cell kill)/(Cell repair)

vmax =
β
γ
; Experimentally measurable maximal enzyme velocity

KM = 1
γ
; Experimentally measurable Michaelis–Menten constant











.

(121)

(122)

si = α; Initial slope

sf = vmax; Final slope

ln n = (vmax − α)KM; logarithm of the extrapolation number







.

(123)D0 =
1

vmax

=
1

k2[E]0
at γ = βD0.
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repaired lesion [R], which is the product substance in reaction (103) for 
enzyme catalysis. 

At high doses, the enzyme-lesion reaction velocity v0 tends to the 
constant value vmax, which is the fastest rate possible for the given 
enzyme concentration [E]0. This means that the rectangular hyperbola 
v0 = αD/(1 + γ D) from (102) as a function of D has reached a plateau at 
larger doses. Stated equivalently, the curve v0 = vmax[L]/(KM + [L]) from 
(107), as a function of [L] is leveled off for higher lesion concentrations, 
[L]. Such a high-dose or a high concentration of lesions described by the 
reaction velocity v0 in terms of the independent variable D or [L] is due 
to the limited amount of enzymes (∼ 100 enzyme molecules per lesion) 
that are available for repair of radiation-damaged cells. At high doses, the 
average number of lesions is sufficiently large to overwhelm and thus inac-
tivate the enzyme repair system, after which point every radiation damage 
is essentially lethal. This saturation of enzymes by lesions is the signature for 
a switch from the cell repair to the cell kill mechanism corresponding to 
the passage from the second- to the first-order Michaelis–Menten kinetics.

Expressions (119) and (120) are written in a way which separates 
the two parts of the PLQ model, by exhibiting the contributions from: 
the  enzyme velocity v0 = vmax[L]/(KM + [L]) and the precipitation of 
the dose-averaged specific energy around the lesion zD + [L]. This is merely 
a formal separation, since the dose-averaged specific energy zD is not a 
quantity which is independent of the enzymatic repair. Quite the contrary, 
combining the definition zD = β/α with β = vmax/KM, we have:

Thus, the enzyme repair system effectively modifies the cell radiosensitivity α 
by the multiplying factor vmax/KM due to the Michaelis–Menten chemical 
kinetics. Because of this inter-connection between zD and {vmax, KM}, the 
product v0(zD) + [L], or equivalently, v0(zD + D) appearing in the effect 
E

(PLQ)
B

 from the PLQ model should not be taken too literally to mean a true 
separation of the two independent mechanisms, the one being enzymatic 
repair (v0) and the other being of microdosimetric origin (zD + D). It is 
merely for the reason of drawing an analogy rather than making a one-to-
one correspondence that we used the notation zD from microdosimetry for 
the defining quotient α/β of the two parameters in the PLQ model for the 
cell kill (α) and cell repair (β) mechanisms of the cell response to radiation. 
The microdosimetric parameter zD was also employed earlier in Eq. (33) 

(124)zD = α

{

vmax

KM

}

.
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for the effect E(LQ)
B

 in the LQ model. There, following Kellerer and Rossi,13 
we expressed the defining relation E(LQ)

B =αD + βD2 =βD(α/β + D) as 
E

(LQ)
B = βD(zD + D), where zD = α/β. Using the assumed direct propor-

tionality between the lesion number (concentration) [L] and dose D, via 
[L] = κD ≡ D, as per (106) and (108), we can further write:

where,

In this way, the effect (33) and the surviving fraction (16) from the 
LQ model can be cast in the following form of the Michaelis–Menten 
terminology:

and,

Notice that both surviving fractions (120) and (127) in the PLQ and LQ 
models, respectively, are expressed through three parameters {zD, vmax, KM}.  
However, there is a special circumstance within v

(LQ)
0  in the LQ model 

permitting a reduction from this apparent three to only two degrees of 
freedom. This is possible because the two parameters vmax and KM do not 
appear individually in S(LQ)

F (D) at different places, but rather they enter Eq. 
(127) through v

(LQ)
0  exclusively as the ratio vmax/KM. This leads to a reduc-

tion from {zD, vmax, KM} to {zD, β}, where β = vmax/KM and zD = α/β.  

E
(LQ)
B = βD (zD + D)

= {β[L]} (zD + [L])

≡ v
(LQ)
0 (zD + [L]) ,

(125)
v

(LQ)
0 = β[L]

=
vmax[L]

KM

.

(126)
E

(LQ)
B = v

(LQ)
0 (zD + [L])

=

(

vmax[L]

KM

)

(zD + [L]) ,

(127)S
(LQ)
F (D) = e−v

(LQ)
0 (zD+[L])

= e
−

(

vmax[L]
KM

)

(zD+[L])
.
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As such, the apparent three parameter set {zD, vmax, KM} is, in fact, a col-
lection of the usual two parameters α and β from the LQ model. In the 
general version of the PLQ model§, none of the three parameters could 
be eliminated so as to have only two remaining degrees of freedom. The 
reason is that, instead of the velocity v(LQ)

0 = vmax/KM from the effect 
E

(LQ)
B = v

(LQ)
0 (zD + [L]) in the LQ model, the initial enzyme velocity 

v0 = vmax[L]/(KM + [L]) appears in the corresponding effect in the LQ 
model via:

so that,

as in (78). Thus, the general PLQ model possesses three parameters because 
any attempt to express E(PLQ)

B
 through the two parameters {α, β} in E(LQ)

B
 

invariably leads to the emergence of the third parameter via the isolated 
term 1/KM = γ. The above juxtaposition of enzyme velocities v

(LQ)
0  and 

v0 from the LQ and PLQ models, respectively, is instructive, since it facili-
tates one of the mechanistic levels of comparison between these two for-
malisms. This is best seen by observing that:

where vmin is the asymptote of the reaction velocity v0 at small concen-
tration of lesions, as per (113). Hence, the PLQ model with its Michaelis–
Menten chemical kinetics of enzyme catalysis for lesion repair can help 

§ �The general PLQ model is the one which excludes the special case in which the final slope vmax is 
constrained to satisfy the relation vmax = 1/D0 from (123), provided that the mean lethal dose D0 is 
viewed as known by e.g., reading off the ending, exponential part of the curve for the cell surviving 
fraction.

E
(PLQ)
B = v0 (zD + [L]) =

{

vmax[L]

KM + [L]

}

(zD + [L])

=

{

vmax[L]

KM
(zD + [L])

} (

1 +
[L]

KM

)−1

= E
(LQ)
B

(

1 +
[L]

KM

)−1

,

(128)E
(PLQ)
B =

E
(LQ)
B

1 + [L]/KM

,

(129)v
(LQ)
0 = vmin,
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understand one of the limitations of the LQ model, such as the restric-
tion to (129). A small concentration of lesions is associated with low-dose 
exposure of cells to radiation. Therefore, restriction of v(LQ)

0  to only small 
repair velocity vmin of enzyme molecules means that the validity of the LQ 
model is limited to low doses. This conclusion from the Michaelis–Menten 
formalism is in accordance with the well-known fact that the LQ model is 
a low-dose approximation to cell surviving fraction.

5. � RESULTS: COMPARISON OF RADIOBIOLOGICAL 
MODELS WITH MEASUREMENTS

The relative performance of the PLQ and LQ models is illustrated by their 
comparisons with experimental data. This is done on the level of cell sur-
viving fractions SF(D) and also by plotting the so-named full effect graph.4 
Such twofold comparisons are deemed necessary for the reasons that run 
as follows.

At low-to-intermediates doses, quite different radiobiological models 
can still be in reasonably close agreement with experimental data when 
plotted as cell surviving fractions SF(D) versus D. This is also evident 
from each panel (i) on Figures 14.1–14.3 when comparing the PLQ 
and LQ models with measurements. Of course, it is also clear from the 
same panel (i) on these figures that this type of relatively good agreement 
between these two formalisms ceases to exist at larger doses because of 
the prevailing Gaussian and exponential shapes of cell surviving fractions 
in the LQ and PLQ model, respectively. The displayed experimental data 
for the corresponding cell surviving fractions favor the predictions by the 
PLQ model at all doses. This confirms the theoretical expectation that the 
PLQ model is universally valid at any dose D. By contrast, at high doses 
the LQ model is seen to break down, as it largely underestimates the sur-
viving fractions from the measurements.

Overall, at small and intermediate doses, survival curves do not appear to 
be the most suitable for differentiating among various models while evaluat-
ing their clinical usefulness in radiotherapy. Moreover, dose–effect functions 
SF(D) are rarely of direct use in dose planning systems that, instead, most 
frequently employ the biological effect EB(D) and the biologically effec-
tive dose BED(D). There is yet another useful relationship, which offers the 
possibility for a more stringent assessment of clinical adequacy of different 
biophysical models. This is the so-called full-effect plot, or Fe-plot,4 which 
is associated with the ratio of the biological effect and the absorbed dose, 
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Fe(D) = (1/D)EB(D), or equivalently, Fe(D) = −(1/D) ln SF(D). This 
quantity is also known by the alternative name “reactivity”13 and denoted 
by R(D), which is also used in panel (ii) on Figures 14.1–14.3:

Such a biological effect per unit dose represents the full effectiveness of 
radiation on cell survival for each given level of dose exposure. It is this 
Fe-plot, depicting Fe(D) versus D, or equivalently, R(D) as a function of 
dose, which can distinguish one model from another in the most dramatic 
way, as is clear from panel (ii) on Figures 14.1–14.3. In the Fe-plot, the LQ 
model yields a linear radiation response, as displayed by a straight line of a 
slope β and the intercept α on the ordinate:

This means that the effectiveness of radiation at every dose level would 
have no bound, as it would be indefinitely increased with augmentation 
of D. Such a pattern is at variance with most experimental data Fe(exp)(D) 
that are seen on plot (ii) of Figures 14.1–14.3 to saturate to some constant 
values at high doses. This behavior is also predicted by the PLQ model 
whose Fe-plot levels off to the constant final slope β/γ, as D becomes very 
large:

Here, the rectangular hyperbola (α + βD)/(1 + γ D) from the PLQ model 
implies the existence of repair of radiation damage to the cell through a 
mechanism of the Michaelis–Menten type for enzyme-lesion catalysis. As 
such, panel (ii) on Figures 14.1–14.3 for the Fe-plot shows excellent agree-
ment of the PLQ model with the corresponding experimental data.

Overall, we can conclude that the universal applicability of the PLQ 
model to all doses is demonstrated in both panels (i) and (ii) of Figures 
14.1–14.3 for cell surviving fractions and the Fe-plot. Simultaneously, 
these comparisons prove the marked superiority of the PLQ over the LQ 
model. This outperformance of the latter by the former radiobiological 
model testifies to the adequacy of the mechanistic underpinning of the 

(130)

Fe(D) ≡ R(D)

=
1

D
EB(D)

= −
1

D
ln SF(D).

(131)Fe(LQ)(D) = R(LQ)(D) = α + βD.

(132)Fe(PLQ)(D) = R(PLQ)(D) =
α + βD

1 + γ D
−→

D→∞

β

γ
.
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Figure 14.1  Cell surviving fractions SF(D) as a function of radiation dose D in Gy (top 
panel (i)). Bottom panel (ii), as the Fe-plot, shows the so-called reactivity R(D) given 
by the product of the reciprocal dose D−1 and the negative natural logarithm of  
SF(D), as the ordinate versus D as the abscissa. Any departure of experimental data 
from a straight line indicates inadequacy of the LQ model for the Fe-plot. Experimental 
data (full circles):30 the mean clonogenic surviving fractions SF(D) (panel(i)) and 
R(D) ≡ −(1/D) ln(SF) (panel (ii)) for the human small cell lung cancer line (U1690) 
irradiated by 190 kVp X-rays. Theories: solid curve for the PLQ (Padé linear-quadratic) 
model and dashed curve for the LQ (linear-quadratic) model (the straight line α + βD 
on panel (ii)).
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Figure 14.2  Cell surviving fractions SF(D) as a function of radiation dose D in Gy (top 
panel (i)). Bottom panel (ii), as the Fe-plot, shows the so-called reactivity R(D) given 
by the product of the reciprocal dose D−1 and the negative natural logarithm of  
SF(D), as the ordinate versus D as the abscissa. Any departure of experimental data 
from a straight line indicates inadequacy of the LQ model for the Fe-plot. Experimental 
data (full circles):17 the mean clonogenic surviving fractions SF(D) (panel(i)) and 
R(D) ≡ −(1/D) ln(SF) (panel (ii)) for the Chinese hamster cells grown in culture and 
irradiated by 50 kVp X-rays. Theories: solid curve for the PLQ (Padé linear-quadratic) 
model and dashed curve for the LQ (linear-quadratic) model (the straight line α + βD 
on panel (ii)).
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Figure 14.3  Cell surviving fractions SF(D) as a function of radiation dose D in Gy (top 
panel (i)). Bottom panel (ii), as the Fe-plot, shows the so-called reactivity R(D) given 
by the product of the reciprocal dose D−1 and the negative natural logarithm of  
SF(D), as the ordinate versus D as the abscissa. Any departure of experimental data 
from a straight line indicates inadequacy of the LQ model for the Fe-plot. Experimental 
data (full circles):31 the mean clonogenic surviving fractions SF(D) (panel(i)) and 
R(D) ≡ −(1/D) ln(SF) (panel (ii)) for the asynchronous V79 Chinese hamster cells irradi-
ated hypoxically by 250 kVp X-rays with a concurrent 30 min exposure to the sulfhydryl-
binding agent, N-ethylmaleimide, of low concentration 0.75 µM. Theories: solid curve 
for the PLQ (Padé linear-quadratic) model and dashed curve for the LQ model (the 
straight line α + βD on panel (ii)).
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Padé linear-quadratic formalism, which is rooted in a firm theoretical and 
practical basis of chemical kinetics for repair of radiation damage by means 
of enzyme-lesion catalytic reaction.

It should be noted that the concept of the Fe-plot is critically important 
for both the conventional fractionation and hypofractionation. It impacts one 
of the most delicate decisions by radiotherapists regarding the question: given 
that radiation indiscriminately damages both tumorous and healthy cells, 
how should the total dose vary as a function of the overall irradiation time, 
as well as the number of fractions, in order to maintain a constant biological 
end effect and also minimize complications to the normal tissues at risk?

6.  DISCUSSION AND CONCLUSION
6.1 � Biologically expressed response of the cell  

to irradiation
It has been argued that the ultimate success of radiotherapy rests upon 
the possibility to properly understand cell repair after irradiation.14, 15 The 
main focus of this chapter is on enzymatic repair mechanisms encoun-
tered in radiobiological descriptions of dose–effect relationships. With this 
goal, we further elaborate the Padé linear-quadratic model, or the PLQ 
model4–6 for cell surviving fraction, S(PLQ)

F (D), as a function of a single 
absorbed dose D. In this novel biophysical model, the biological effect 
of radiation, E(PLQ)

B (D) = − ln S
(PLQ)
F (D), is given by the Padé approxi-

mant, E(PLQ)
B (D) = (αD + βD2)/(1 + γ D). By a smooth transition, this 

rational function becomes automatically linear at both low and high doses, 
E

(PLQ)
B (D) −→

D→0
αD and E(PLQ)

B (D) −→
D→∞

(β/γ )D. Precisely such types of 

exponentials have been observed by numerous measurements in the said 
two dose limits. The PLQ model has three parameters {α, β, γ }. Here, as 
usual, radiosensitivity α is a single event inactivation constant in units of 
Gy−1. However, parameter β, which is in units of Gy−2, is derived from the 
introduction of a delay time in the cell response to radiation insult. This 
delay is associated with the existence of a repair or recovery time τ. Any 
two consecutive radiation events or hits would be wasted, i.e., not regis-
tered at all by the cell, if they were separated by a time interval �t such that 
�t < τ. The cell becomes effectively insensitive to such consecutive hits. 
Parameter γ is the reciprocal of the Michaelis–Menten constant, KM, from 
the theory of chemical kinetics for enzyme catalysis. This latter quantity 
is the concentration of lesions at which the enzyme velocity of repair, v0, 
attains one half of its maximum,7 i.e. vmax.
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6.2 � Dose–effect relationships at low, intermediate  
(shoulder), and high doses

One of the most important advantages of the PLQ model relative to the 
linear-quadratic model is of particular relevance to radiotherapy by high 
doses per fraction used especially in stereotactic radiosurgery. For this treat-
ment modality, called hypofractionation, the LQ model is inadequate, since 
its biological effect, E

(LQ)
B (D) = αD + βD2, has a high-dose asymptote 

E
(LQ)
B (D) −→

D→∞
βD2, which is at variance with the corresponding experi-

mental data exhibiting the exponential shape, E
(exp)

B (D)∼D, as D → ∞. 
This severely hampers the proper use of one of the key quantities in dose 
planning systems, the so-named biologically effective dose, which is a scaled 
biological effect, BED(D) = (1/α)EB(D). Since the LQ model is not 
universally valid at all doses, the entire set of the given experimental data 
for BED(exp)(D) cannot be used for extracting the biological parameters. 
Therefore, the usual practice is to carry out a segmentation of the given set 
of experimental data BED(exp)(D) into different dose ranges to estimate the 
ratio β/α from the postulated relation BED(exp)(D) ≈ BED(LQ)(D), where 
BED(LQ)(D) = (1/α)E

(LQ)
B (D) = 1 + (β/α)D. A serious disadvantage 

of such a procedure is that the quotient β/α and, therefore, BED(exp)(D) 
become dose-range dependent. This introduces complications in employ-
ing the BED concept to compare the conventional fractionation (2 Gy per 
fraction)16–20 with hypofractionation.21, 22 Such comparisons are critical 
for extrapolating the abundant experience with conventional fractionation 
to hypofractionated treatments. This is vital given that larger doses per frac-
tion have a tendency of causing more severe late side effects relative to the 
conventional small size fractions. Additionally, the LQ model has difficulties 
in coping with cell survival curves with broad shoulders.23, 24 Moreover, on 
top of continuously bending down as dose D is enlarged, pointing to the 
non-existence of the final slope and the extrapolation number n, the LQ 
model can break down at very low doses, as well.12

6.3  Beyond the linear-quadratic model of cell inactivation
In order to partially overcome the mentioned drawbacks of the LQ model, 
Paganetti and Goitein25 introduced in 2001, within the amorphous track 
partition (ATP) model, a modification containing a Heaviside step func-
tion with a transition dose DT. Their surviving fraction coincides with 
the linear-quadratic response e−αD−βD2

 from the LQ model at D � DT 
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and, conversely, becomes a linear function of dose D at D > DT via 
e−αDT−βD2

T−γ (D−DT). Here, γ is either a third independent fitting parameter 
or the final slope fixed by the continuity constraint of the derivative of the sur-
viving fraction at D = DT, which leads to γ = α + 2βDT. More recently in 
2008, the modified LQ model from Ref. 25 has been renamed as the universal 
survival curve (USC) model by Park et al.,26 and the linear-quadratic-linear 
(LDL) model by Astrahan.27 However, the common feature of Refs. 25–27 is 
an ad hoc switch from the incorrect D2 high-dose component in the LQ model 
to the corresponding term with a linear dose dependence (∼ D) in the cell 
surviving fraction. The transition dose D = DT at this switch has no justifi-
able biological significance, as it represents just another free parameter. Typical 
measurements of surviving fractions for most mammalian cell lines can be 
trustworthy only down to the 10−3 survival level. For this reason, extraction of 
parameter DT from such experimental data could hardly be reliable. Astrahan27 
tried to attribute a clinical meaning to DT by claiming that it delineates the 
region of the passage from the shoulder region to the linear component of the 
LQ model. Evidently, this is merely rewording the mathematical meaning of 
the mentioned Heaviside step function from Refs. 25–27 and, as such, cannot 
constitute a clinical nor biological interpretation of the transition dose DT. 
Moreover, it has been found in applications27, 28 that DT can be anywhere in 
a quite wide dose range 15Gy–30 Gy. Such locations of DT are incompatible 
with Astrahan’s27 interpretation of the transition dose, since shoulders do not 
typically extend to even the lowest limit (15 Gy) of the mentioned interval.

6.4 � Mixed-order chemical kinetics for enzymatic  
cell repair systems

The mentioned problems with the LQ model have also been addressed 
within the PLQ model.4–6 In this mechanistic description, as opposed to an 
empirical transition dose DT, different passages from intermediate to high 
doses are governed by natural switches from various orders (zero, first, sec-
ond) of chemical kinetics that underlies interactions of radiation with the 
cell. A key role in these different switches from one to another dose depen-
dence of cell surviving fraction is the overall activity of enzyme molecules 
in the process of repair of radiation damage of the cell. This mixed-order 
enzyme catalysis, which is at the center of the cell repair system, guarantees 
the emergence of the correct asymptotes of the biological effect at both 
small and large doses. It also secures the existence of a shoulder of the 
proper width at intermediate doses in typical cell surviving fractions. Such 
a clear mechanism is backed by the accompanying mathematical formalism 
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in the PLQ model through the Padé approximant, which is known to pro-
vide optimal interpolations and extrapolations between different regions 
of a given function.11 This is achieved smoothly without ever resorting to 
unnecessary artifices, such as sewing two different regions by a transition 
dose DT placed at an empirically found point through the Heaviside step 
function as in Refs. 25–27. Our initial testings,4–6 as reviewed here, and our 
more recent thorough comparisons of nine different models with six cell 
lines28 resulted in the common conclusion that the PLQ model systemati-
cally provides the most satisfactory description of cell survival after irradia-
tion. This is most prominently evidenced at high doses in the reconstructed 
dose–effect curves as well as in the associated Fe-plots.29
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	28.	 Abdisheh, B.; Edgren, M.; Belkić, Dž.; Mavroidis, P.; Lind, B.; Brahme, A. A comparative 
analysis of radio-biological models for cell-surviving fractions at high doses. Tech. Cancer 
Res. Treatm. Ahead of print 2012 (DOI:10.7785/tcrt.2012.500306).

	29.	 Douglas, B. G.; Fowler, J. F. The effect of multiple small doses of X-rays on skin reactions 
in the mouse and basic interpretation. Rad. Res. 1976, 66, 401.

	30.	 Persson, L. Cell survival at low and high ionization densities investigated with a new 
model. PhD Thesis (unpublished), Stockholm University, Stockholm, 2002.

	31.	 Kimmler, B. F.; Sinclair, W. K.; Elkind, M. M. N-Ethylmaleimide sensitization of 
X-irradiated hypoxic Chinese Hamster cells. Rad. Res. 1977, 71, 204.


	Chapter Fourteen Mechanistic Repair-Based Padé Linear-Quadratic Model for Cell Response to Radiation Damage
	1. Introduction
	2. Dose–effect curve (response curve or cell surviving curve)
	2.1 Poisson distribution of radiation events, mean lethal dose
	2.2 Extrapolation number and quasi-threshold dose

	3. The linear-quadratic model
	3.1 Biological effect, relative effectiveness, and biologically effective dose
	3.2 The Barendsen formula
	3.3 Low- and high-dose asymptotes of biological effect and surviving fraction

	4. The Padé linear-quadratic model
	4.1 Differentiation between physical and biological doses
	4.2 Repair-mediated non-linear damping of linear direct cell kill mechanism
	4.3 Initial slope, final slope, and extrapolation number
	4.4 The Padé linear-quadratic model and the Michaelis–Menten kinetics

	5. Results: comparison of radiobiological models with measurements
	6. Discussion and conclusion
	6.1 Biologically expressed response of the cell to irradiation
	6.2 Dose–effect relationships at low, intermediate (shoulder), and high doses
	6.3 Beyond the linear-quadratic model of cell inactivation
	6.4 Mixed-order chemical kinetics for enzymatic cell repair systems

	Acknowledgments
	References


