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Abstract Michaelis–Menten second-order chemical kinetics is used to describe the
three main mechanisms for surviving fractions of cells after irradiation. These are a
direct yield of lethal lesions by single event inactivation, metabolic repair of radiation
lesions and transformation of sublethal to lethal lesions by further irradiations. The
mass action law gives a system of time-dependent differential equations for molar
concentrations of the invoked species that are the DNA substrates as lesions, enzyme
repair molecules, the product substances, etc. The approximate solutions of these cou-
pled rate equations are reduced to the problem of finding all the roots of the typical
transcendental equation axe−bx = c with x ≥ 0 being a real variable, where a, b and
c are real constants. In the present context, the unique solution of this latter equation
is given by x = (1/b)W0(bc/a) where W0 is the principal-branch real-valued Lam-
bert function. Employing the concept of Michaelis–Menten enzyme catalysis, a new
radiobiological formalism is proposed and called the “Integrated Michaelis–Menten”
(IMM) model. It has three dose-range independent parameters ingrained in a system
of the rate equations that are set up and solved by extracting the concentration of
lethal lesions whose time development is governed by the said three mechanisms. The
indefinite integral of the reaction rate is given by the Lambert W0 function. This result
is proportional to the sought concentration of lethal lesions. Such a finding combined
with the assumed Poisson distribution of lesions yields the cell surviving fraction after
irradiation. Exploiting the known asymptotes of the Lambert W0 function, the novel
dose-effect curve is found to exhibit a shoulder at intermediate doses preceded by
the exponential cell kill with a non-zero initial slope and followed by the exponential
decline with the reciprocal of the D0 or D37 dose as the final slope. All three dose
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regions are universally as well as smoothly covered by the Lambert function and,
hence, by the ensuing cell surviving fractions. The outlined features of the proposed
IMM model stem from a comprehensive mechanistic description of radiation-lesion
interactions by means of kinetic rate equations. They are expected to be of critical
importance in new dose-planning systems for high doses per fraction where the con-
ventional linear-quadratic radiobiological modeling is demonstrably inapplicable.

Keywords Cell repair · Michaelis–Menten enzyme catalysis · Lambert function ·
Chemical kinetics · Rate equations · Dose planning systems · Hypofractionated
radiotherapy

1 Introduction

This study is on mechanistic biophysical models for cellular radiobiology and
hypofractionated radiotherapy, which administers a few large doses in shorter time
intervals. Such radiobiological models are of paramount importance for dose-planning
systems for treatment of patients with cancer. When radiation doses are progressively
increased, measurements of surviving fractions of damaged cells demonstrate a purely
exponential inactivation e−D/D0 . This pathway of cell death is ignored in the linear-
quadratic (LQ) model, which predicts a dominant Gaussian inactivation e−βD2

at high
doses. As a result, in computing the needed conversions of administered physical
doses to its biological counterparts, such as cell surviving fraction SF, biologically
effective dose (BED), full effect (Fe), tumor control probability (TCP), etc., the LQ
model incurs errors that increase as the absorbed dose becomes larger. These errors
yield unrealistic estimates of the effectiveness of the absorbed high-dose per fraction
and are, therefore, responsible for inaccuracies of treatment plans for hypofractionated
radiotherapy.

This difficulty is explicit in the probability expression for the surviving frac-
tion in the LQ model, SF = e−αD−βD2

, as well as in the corresponding Fe =
−(1/D) ln SF = α + βD, where α and β are the two radiosensitivity parameters.
Here, at large doses D, the asymptote e−βD2

of the surviving fraction SF in the
LQ model is much smaller that the corresponding experimentally measured quantity,
which usually behaves as e−D/D0 , where D0 is the mean lethal dose. Such a smaller
cell survival given by the LQ model corresponds to a situation where many more
tumor cells are predicted to be killed by radiation than in reality as recorded by mea-
surements. A direct consequence of the absence the exponential cell kill mode from
the LQ model at high doses is the fact that the expression α + βD for the Fe linearly
increases indefinitely without a bound as dose D is augmented. This pattern is opposed
to customary measurements where the experimental Fe linearly increases with dose
only at low doses, but gradually saturates to a constant value attaining a plateau at
very high doses. Such a behavior of the measured Fe, recorded as being leveled off,
signifies the lack of biological benefit from radiation when the high-dose region is
approached. In fact, the same conclusion also holds true by drawing a linear-linear
plot with dose as the abscissa and surviving fraction as the ordinate. Therein, after a
sufficiently high value of D, any further increase in dose would make only a negligi-
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ble biological difference because of the occurrence of the nearly zero survival in the
tail of SF. All these facts jointly confirm the fact that the high-dose prediction of the
biological effectiveness of radiation is inadequate in the LQ model which is, as such,
unsuited for hypofractionated radiotherapy.

To systematically overcome these obstacles in the LQ model, we presently propose
a different biophysical theory of radiation damage based upon the Michaelis–Menten
mechanism of enzyme catalysis for cell repair. This chemical reaction is comprised of
two steps: (i) formation and (ii) destruction of an intermediate molecular compound
built from free enzymes and lesions. The essential substances targeted by radiation
are usually taken to be deoxyribonucleic acid (DNA) molecules. The most critical
damages (lesions) are single and double strand breaks (SSB, DSB) of DNA. The exit
channel of enzyme catalysis contains the products as repaired lesions and free unal-
tered enzymes that continue further bindings to other sublethal lesions for the purpose
of repairing them from radiation injury. The ensuing biophysical description of the
studied radiation-lesion interactions is called the Integrated Michaelis–Menten (IMM)
model because it uses the integrated form of the Michaelis–Menten equation [1–3].
This is an alternative to the Differential Michaelis–Menten (DMM) model, or equiva-
lently, the Padé linear-quadratic (PLQ) model [4–9] which defines the repair function
by the differential form of the Michaelis–Menten equation, through the dependence
of the initial velocity v0 of enzymes on dose D by way of the well-known rectangular
hyperbola.

The cell surviving fraction in the IMM model is given by the concise analytical
expression in terms of the explicit principal-branch Lambert W0 function. The inde-
pendent variable of the W0 function contains the physically absorbed dose D. This new
radiobiological model is applicable to all doses. It predicts the existence of a shoulder
situated between the low- and high-dose regions, both of which are described as being
dominated by the exponential cell kill modalities, that are also encountered in the
majority of the corresponding measurements. In the small-dose limit, the IMM model
is reduced to the DMM or PLQ model, which at still lower doses coincides with the
LQ model. In the limit of very high doses, the IMM model yields the surviving fraction
SF in the form ne−D/D0 , which is reminiscent of the associated observable from the
multi-target and single hit model, where n is the extrapolation number. In the IMM
model, the extrapolation number n is related to the product of the maximal enzyme
velocity vmax and repair time tR through the relation ln n = vmaxtR.

In the development of treatment schedules for hypofractionated radiotherapies
(e.g. stereotactic radiosurgery, stereotactic body radiotherapy and high-dose rate
brachytherapy) as well as in the phase I dose-finding studies, it is necessary to carry
out the accompanying long and involved processes. This is typically continued by a
gradual progression from the preclinical to clinical trial steps until reaching a stage
which would permit a broader implementation of the fractionation regimens in clin-
ical practice. The efficacy of these procedures is critically influenced by biophysical
models that play a pivotal role in designing clinical trials and in analyzing as well as
interpreting the obtained results. The presently proposed radiobiological model pos-
sesses a more predictive and interpretative power than its competitors, as it involves cell
repair by means of the Michaelis–Menten mechanism for enzyme catalysis, which has
passed the test of time in biochemistry and enzymology. Therefore, the IMM model is
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expected to accelerate the mentioned long process, to make them more cost-effective
and, most importantly, to enable radiation oncologists to design the new and more
adequate radiation dose schedules.

2 Chemical kinetics for enzyme catalysis

Here, we shall consider repair by the mechanism of enzyme catalysis [1–3]. This kind
of chemical reaction implies a temporary creation and breakage of an intermediate
unstable compound structure between the irradiated cell molecules and enzymes. The
products of this chemical reaction are repaired lesions and enzyme molecules, as
symbolized by:

[E] + [S] �
k1

k−1
[ES] −→k2

[E] + [P] . (2.1)

In the general nomenclature, labels [E](t), [S](t), [ES](t) and [P](t) denote the time-
dependent concentrations of the free enzyme molecules, substrate, enzyme-substrate
complex and product, respectively. Hereafter, whenever the independent variable t
of concentrations is not explicitly shown, it will be understood that the following
convention holds:

[S] ≡ [S](t), [E] = [E](t), [ES] = [ES](t), [P] = [P](t) . (2.2)

In (2.1), we have the simplest enzyme catalysis involving only a single substrate [S]
with no inhibitors, co-inhibitors, etc. Here, k1 is the rate coefficient for formation of
the intermediate complex molecule [ES]. This complex can be destroyed with either
the rate constant k−1 or k2 in the backward or forward reaction, retrieving the initial
[E] + [S] or creating the final [E] + [P] reactants, respectively. Here, only k1 is a
bimolecular rate constant, whereas k−1 and k2 are unimolecular rate constants. Uni-
molecular or monomolecular reactions are those chemical reactions (or subreactions,
i.e. different paths of a given reaction) in which only one reactant undergoes alteration
of its mass. By contrast, in bimolecular reactions, both reactants change their masses.
The basic mechanism behind reaction (2.1) is that the free enzymes [E] are reversibly
bound to substrate [S], thus forming a temporary intermediate complex [ES], which
is unstable and, therefore, prone to decay. After decay, enzyme [E] is set free and
emerges unaltered from reaction (2.1), whereas substrate [S] is irreversibly converted
into the product [P]. In this way, enzyme [E] becomes again free for further binding
with another substrate.

To determine the rate of the conversion of [S] to [P] via reaction (2.1) and to find
the time evolution of the invoked concentrations [E](t), [S](t), [ES](t) and [P](t), it
is common to assume that the initial substrate concentration is much larger than that
of the enzyme:

[S]0 � [E]0 , (2.3)

which, in practice, reads as, for example:
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[E]0
[S]0 ≤

1

100
= 0.01 . (2.4)

Here, [E](0) ≡ [E]0 and [S](0) ≡ [S]0 are the respective initial values of the enzyme
and substrate concentrations at t = 0. Approximation (2.3) is ordinarily adequate for
in vitro, but it is usually not satisfied for in vivo intracellular media with high enzyme
concentrations [10–12]. Repair by way of enzyme catalysis for in vivo substances will
be considered later on in a separate publication.

The overall goal is to determine the initial reaction velocity v0 for (2.1), i.e. the rate
of enzymatic catalysis at which the complex [ES] irreversibly decomposes itself to
[E] and [P]. The first step towards this end is to evoke the law of mass action, which
states that reaction rates are proportional to concentrations of the reactants. Since the
intermediate complex [ES] is labile, it will decay to an enzyme and a product. Thus,
the initial rate of fragmentation of [ES] to [E] + [P] must be directly proportional to
the concentration of the complex:

v0 ∼ [ES] . (2.5)

A proportionality constant is needed to pass to the equality sign in (2.5). Such a
constant can be identified by reference to the dissociation part [ES] −→k2

[E] + [P] of
reaction (2.1), so that:

v0 = k2[ES] . (2.6)

This relation, however, is not useful in practice for determination of v0, since [ES] is
unknown and, moreover, it cannot be directly measured in experiments. Nevertheless,
there ought to be an alternative way to approximately determine [ES] by expressing
it in terms of some other observables (experimentally measurable quantities). This
would render expression (2.6) useful in practice. This is indeed possible within four
settings, the Michaelis and Menten (MM) [1] quasi-equilibrium (QE), the van Slyke
and Cullen (SC) time summation (TS) [2], the Briggs and Haldane (BH) [3] quasi-
steady state (QSS) [3] and the presently proposed halved harmonic mean (HHM)
formalisms. They are based on three different interpretations of the same assumption
stating that after an initial, short, transient time, the reactant concentrations will vary
slowly. Thus, the QE formalism [1] supposes that there is a quasi-equilibrium between
formation and destruction of [ES]. The TS formalism [2] for the irreversible version
of (2.1) with k−1 = 0 is based on adding two different times spent first on forming
the intermediate complex [ES] and then on destroying it with the emergence of free
enzyme [E] and product [P]. This latter time sum is inversely proportional to enzyme
velocity v0. In the QSS formalism [3], which relies on the earlier original concept
of Bodenstein [13], the state of the complex [ES] is viewed as a quasi-steady state
or a pseudo steady state (PSS) which is prone to decay. In the HHM formalism for
the reversible chemical reaction (2.1), enzyme velocity v0 is identified as the effective
velocity veff proportional to the halved harmonic mean of the two limiting velocities for
reversible formation and dissociation of the intermediate molecular compound [ES].
The proportionality factor in v0 is the probability k2/(k2 + k−1) which represents the
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branching fraction for product formation and the total dissociation rate. The QE, QSS
and HHM formalisms are quantitatively equivalent to each other, since they all stem
from the same reversible reaction (2.1) of enzyme catalysis thus yielding the identical
analytical formula for the initial velocity v0. Moreover, this latter joint formula for v0
is reduced to the corresponding expression from the TS formalism of van Slyke and
Cullen [2] by setting k−1 = 0, which applies only to irreversible enzyme catalysis.

2.1 A quasi-equilibrium between formation–destruction of the transient compound
(the Michaelis–Menten theory)

We shall first show how an estimate of [ES] can be made using the concept of quasi-
equilibrium for formation-destruction of the intermediate complex. In the QE frame-
work, the intermediate complex is in a quasi-equilibrium with the reactants. This
means that the reaction of the compound formation via [E]+ [S] −→k1

[ES] is in quasi-
equilibrium with the two pathways of the compound destruction or breakdown through
[E]+[S] ←−k−1

[ES] and [ES] −→k2
[E]+[P]. Thus, the QE hypothesis can be formulated

as the following rate or velocity matching condition:

Rate of formation of complex [ES] ≈ Rate of destruction of complex [ES]{
d[ES]

dt

}
formation

≈
{

d[ES]
dt

}
destruction

(Quasi− equilibrium, or QE)

⎫⎬
⎭ ,

(2.7)

where,

[E] + [S] −→k1
[ES]{

d[ES]
dt

}
formation

= k1[E] [S]

⎫⎬
⎭ , (2.8)

and,

[E] + [S] ←−k−1
[ES] & [ES] −→k2

[E] + [P]{
d[ES]

dt

}
destruction

= (k−1 + k2)[ES]

⎫⎬
⎭ . (2.9)

Inserting (2.8) and (2.9) into (2.7) yields:

0 ≈ {(d/dt)[ES]}formation − {(d/dt)[ES]}destruction = k1[E] [S] − (k−1 + k2)[ES] .

This gives the following relation:

[ES] ≈ [E] [S]
KM

(Consequence of the the equilibrium), (2.10)
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where KM is the Michaelis–Menten rate constant:

KM = k−1 + k2

k1
. (2.11)

On the other hand, quantity [E] from (2.10) is equal to the difference between the
concentrations [E]0 and [ES] of free and bound enzyme molecules, respectively:

[E] = [E]0 − [ES] . (2.12)

Inserting [E] from (2.12) into (2.10) yields the expression [ES] = ([E]0 −
[ES])[S]/KM, which gives concentration [ES] as:

[ES] = [E]0[S]
KM + [S] . (2.13)

Finally, by substituting (2.13) into (2.6), it follows v0 = k2[ES] = k2[E]0[S]/
(KM + [S]), or equivalently:

v0 = vmax[S]
KM + [S] , (2.14)

where vmax is the maximal enzyme velocity,

vmax = k2[E]0. (2.15)

This is the Michaelis–Menten equation. If the substrate concentration from Eq. (2.14)
is varied in such a way that [S] could approximately acquire the fixed value KM :

[S] ≈ KM , (2.16)

then Eq. (2.14) would give:

v0 ≈ 1

2
vmax at [S] ≈ KM . (2.17)

Hence KM is seen as the concentration of substrate [S] for which the reaction velocity
v0 attains one half of its maximum value vmax. Likewise, with the setting (2.16), we
have the special case of Eq. (2.13):

[ES] ≈ 1

2
[E]0 at [S] ≈ KM. (2.18)

Therefore, if during a continued variation of the substrate concentration [S], one of its
particular values becomes equal to the MM constant (fixed by the enzyme catalysis
under study), [S] = KM, then the concentration [ES] of the intermediate complex
will coincide with one half of the initial enzyme concentration [E]0. Thus, for a given
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[E]0, although we said earlier that no values of [ES] could be directly measured due
to the small lifetime of the intermediate complex, we nevertheless see from (2.18)
that a special value [ES] ≈ [E]0/2 can be inferred for [S] ≈ KM, under the assumed
validity of the MM kinetics.

The result (2.14) shows that the decline in the approximate velocity v0 during the
enzyme catalyzed reaction (2.1) is due solely to depletion of the substrate concen-
tration [S]. It is seen in (2.14) that the enzyme reaction velocity v0 increases with
augmentation of the substrate concentration [S] at a decelerating rate until the point
at which the asymptotic speed vmax is attained. Specifically, at v0 ≈ vmax, the enzyme
[E] is fully saturated with the substrate [S] in the sense that any further increase in [S]
has no effect whatsoever on the enzyme velocity v0. In other words, after reaching the
limit value vmax, velocity v0 levels off as a function of [S], i.e. v0 reaches a plateau,
v0 ≈ vmax as a sign of the absence of further binding of [E] to [S]. This type of behavior
in (2.14) plotted as v0 versus [S] gives a shape which is called a rectangular hyperbola.
Similar rectangular hyperbolae are also encountered in the dependence of the relative
radiosensitivity of bacteria as a function of concentration of either oxygen [14–16] or
glycerin [17]. Moreover, the MM-type rectangular hyperbolae appear in other research
problems across interdisciplinary fields e.g. the Langmuir adsorption equation in sur-
face physics for variation of adsorption with pressure, the Monod function in resource
competition theory, the Holling type II functional response in predator-prey dynamics,
the Beverton-Holt stock-recruitment function in fish biology, etc. The MM Eq. (2.14)
has only two parameters, vmax and KM that need to be extracted from the analyzed
experimental data. Such parameters have a key biophysical significance in enzyme
kinetics. This huge advantage of mechanistic data analyses on enzyme catalysis (2.1)
is especially important relative to curve fitting techniques that use freely adjustable
parameters with some assumptions made to minimize the squared errors (squared dif-
ference between a model and experimental data), but without any mechanistic backing.

2.2 Quasi-steady states of the intermediate complex (the Briggs-Haldane theory)

2.2.1 Conventional derivation of enzyme velocity

The quasi-steady state concept of Bodenstein [13] was employed by Briggs and Hal-
dane [3] for enzyme catalysis (2.1). This was motivated by the realization that the
QE hypothesis of Michaelis and Menten [1] is unnecessarily restrictive and, as such,
could be replaced by a more general assumption. Alternatively, one can suppose that
the intermediate complex [ES] is in a quasi-steady or quasi-stable state. With this setup,
the complete time evolution of the studied system is described by a kinetic system of
coupled non-linear differential equations. Four such rate equations are needed from the
onset because enzyme catalysis (2.1) involves four substances [E](t), [S](t), [ES](t)
and [P](t) :

d[S]
dt
= −k1[E] [S] + k−1[ES] (2.19)
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d[E]
dt
= −k1[E] [S] + (k−1 + k2)[ES] (2.20)

d[ES]
dt
= k1[E] [S] − (k−1 + k2)[ES] (2.21)

d[P]
dt
= k2[ES], (2.22)

with the initial conditions at t = 0:

[S](0) = [S]0, [E](0) = [E]0, [ES](0) = [ES]0, [P](0) = [P]0. (2.23)

Even though the independent variable t is not written in (2.19)–(2.22), the displayed
concentrations are time-dependent according to the convention (2.2). The sought initial
velocity v0 is defined as the rate of formation of product the [P] :

v0 ≡ d[P]
dt

, (2.24)

in accordance with (2.6) and (2.22). This is also the speed by which the enzyme
from the labile complex [ES], then sets itself free and expels the product [P] via the
catalysis reaction (2.1). Note that on account of relation v0 = k2[ES] from (2.6), the
4th equation d[P]/dt = k2[ES] in the system of kinetic rate Eqs. (2.19)–(2.22) can be
rewritten as d[P]/dt = v0, which is the definition (2.24) of the enzyme velocity v0.

Hence consistency.
Not all the equations from the system (2.19)–(2.22) are independent. Certain obvi-

ous inter-relationships among these rate equations can be exploited to reduce the
original system to a simpler, but nevertheless still exact form. For example, by adding
together Eqs. (2.19) and (2.20), it follows:

d[E]
dt
+ d[ES]

dt
= 0 , (2.25)

which upon integration gives:

[E] + [ES] = C1 . (2.26)

The boundary conditions from (2.23) can be used to determine the integration constant
C1 as:

C1 = [E]0 . (2.27)

With this, Eq. (2.26) is recognized as the enzyme mass conservation law:

[E](t)+ [ES](t) = [E]0 . (2.28)

This has also been used in the QE formalism via (2.12). Relation (2.28) explicitly
shows that at any time t, the sum of the concentrations [E](t) and [ES](t) for the free
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and bound enzymes is constant and equal to the enzyme concentrations at the initial
time [E](0) = [E]0, which is also called the total enzyme concentration [E]tot :

[E](0) = [E]0 ≡ [E]tot . (2.29)

Likewise, the sum of (2.19), (2.21) and (2.22) is the following differential equation:

d[S]
dt
+ d[ES]

dt
+ d[P]

dt
= 0 , (2.30)

whose integral is:

[S](t)+ [ES](t)+ [P](t) = C2 . (2.31)

The integration constant C2 is fixed by the initial conditions from (2.23) as:

C2 = [S]0 , (2.32)

so that Eq. (2.31) becomes the substrate mass conservation law:

[S](t)+ [ES](t)+ [P](t) = [S]0 . (2.33)

This indicates that for any time t, the sum of the concentrations [S](t) , [ES](t) and
[P](t) for the free, bound and the inverted substrate, respectively is constant and equal
to the substrate concentrations at the initial time [S](0) = [S]0 . Here, the substrate
which is inverted by enzyme catalysis (2.1) to the product [P](t) is called the inverted
substrate or invertase.

By inserting (2.28) into Eq. (2.19) and (2.33) into Eq. (2.21), we have:

d[S]
dt
= −k1 ([E]0 − [ES]) [S] + k−1[ES] , (2.34)

d[ES]
dt
= k1 ([E]0 − [ES]) [S] − (k−1 + k2)[ES] . (2.35)

This shows that the two mass conservation laws (2.28) and (2.33) effectively reduce
the dimension of the original system with four Eqs. (2.19)–(2.22) to only two Eqs.
(2.34) and (2.35). No approximation was made thus far in passing from the original
to the reduced system of equations. Nevertheless, although very useful, this reduction
alone cannot be of help in finding the exact analytical solution of the system of coupled
non-linear differential Eqs. (2.34) and (2.35). An analytical approximate solution is
possible by using the assumption (2.3) of the QSS model. Thus, under the condition
(2.3) for which the substrate molecules are much more abundant than the available
enzymes, [E] is converted to [ES] via [E] + [S] −→k1

[ES] and reconverted to [E]
through [E]+ [S] ←−k−1

[ES]many times prior to reaching the quasi-equilibrium. This
makes the rate (d/dt)[ES] negligibly small relative to the other competitive terms in
the coupled kinetic Eqs. (2.19)–(2.22). Therefore, within the assumption (2.3), to a
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high degree of accuracy, it is justified to view the rate (d/dt)[ES] as being close to
zero:

d[ES]
dt
≈ 0 (Quasi− steady state, or QSS) . (2.36)

In other words, for [S]0 � [E]0 the state of the investigated system in the interme-
diate complex in reaction (2.1) can be considered as being nearly stationary (quasi-
stationary) or nearly steady. As usual, the condition for a stationary (i.e. time-invariant)
state is expressed through equating the first derivative (with respect to time) of that
state to zero. This is the content of the approximation (2.36). With (2.36) at hand, the
rhs of Eq. (2.35) simplifies as:

k1 ([E]0 − [ES]) [S] − (k−1 + k2)[ES] ≈ 0

∴
(

k−1 + k2

k1
+ [S]

)
[ES] ≈ [E]0[S]

⎫⎬
⎭ , (2.37)

so that,

[ES] ≈ [E]0[S]
KM + [S] , (2.38)

where KM is the MM rate constant from (2.11). Expression (2.38) is the same as
formula (2.13) from the QE formalism. The result (2.38) expresses the unknown con-
centration [ES] of the intermediate complex in terms of the three other, experimentally
measurable concentrations [E]0 , [S] and KM. It is the formula (2.38) for [ES], which
was sought to complete the task of using (2.6) to find the initial velocity v0 = k2[ES]
of enzyme catalysis (2.1):

v0 = k2[ES]

= k2

{ [E]0[S]
KM + [S]

}
. (2.39)

Substitution of the approximate concentration (2.38) for the intermediate complex
[ES] into Eq. (2.34) yields:

d[S]
dt
≈ −k2[E]0 [S]

KM + [S] . (2.40)

On the other hand, insertion of (2.38) into Eq. (2.35) gives the rate of the product
formation:

d[P]
dt
≈ k2[E]0 [S]

KM + [S] . (2.41)
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The lhs of this equation is the initial velocity v0 for reaction (2.1) according to (2.24)
and this yields the same result for v0 as in (2.39), but written in an alternative form:

v0 ≈ vmax[S]
KM + [S] , (2.42)

in agreement with (2.14) where vmax is given by (2.15).

2.2.2 An alternative derivation of enzyme velocity

Here, we shall give an alternative analysis in the QSS formalism. To this end, using
the QSS hypothesis d[ES]/dt ≈ 0 from (2.36), we can simplify Eq. (2.30) as:

d[P]
dt
≈ −d[S]

dt
,

d[ES]
dt
≈ 0 . (2.43)

In other words, the consequence of the condition (2.36) is the twofold definition of
the enzyme velocity:

v0 = d[P]
dt

≈ −d[S]
dt

if
d[ES]

dt
≈ 0 , (2.44)

where the first relation v0 = d[P]/dt is taken from (2.6) and (2.22). Employing (2.44),
the left hand sides of Eqs. (2.19) and (2.22) become approximately equal to each other.
Thus, we can also equate the corresponding right hand sides of Eqs. (2.19) and (2.22)
to obtain the relation k1[E][S] + k−1[ES] = k2[ES], which can be rewritten as:

[ES] = [E][S]
KM

(Consequence of the quasi− steady state hypothesis). (2.45)

This result coincides with (2.10) which was derived in the QE formalism as a direct
consequence of assuming the existence of an equilibrium between formation and
destruction of intermediate complex [ES]. As in the QE formalism, using the mass
conservation law (2.12) for enzyme concentration, we replace [E] from (2.45) by
[E]0 − [ES] to transform [ES] to [ES] = ([E]0 − [ES])[S]/KM which gives:

[ES] = [E]0[S]
KM + [S] . (2.46)

This is Eq. (2.13) from the QE formalism. Combining Eqs. (2.45) and (2.46) yields
the same MM equation from (2.14) according to:

v0 = vmax[S]
KM + [S] , (2.47)

where vmax = k2[E]0 as in (2.15). The analysis from this sub-subsection is more
straightforward than the conventional derivation from 2.2.1. In particular, it is shown
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here that there is no need at all to use the reduced system of two coupled rate equations
(2.34) and (2.35) to obtain the MM equation. Moreover, during a short derivation, this
alternative analysis makes a closer step-by-step link to the corresponding develop-
ment from the QE formalism than what is done in the usual calculations from 2.2.1.
Specifically, it is demonstrated that the identical key relation (2.45) between the con-
centrations of the intermediate complex [ES] and the product [E] [S] of enzyme and
substrate concentrations stems equivalently from the QE and QSS hypotheses, as seen
in (2.10) and (2.45).

Using the substrate mass conservation law (2.28) to replace [E]0 by [E] + [ES] in
(2.38), we can deduce the MM constant KM in the following form of the quotient of
concentrations [E][S] and [ES]:

KM ≈ [E][S][ES] at t = tmax , (2.48)

in agreement with (2.10) and (2.45). Here, tmax is the extremal time, i.e. the root of
the equation (d/dt)[ES] ≈ 0 as in (2.36). Relation (2.48) gives information about
the abundance of enzymes [E] in the complex [ES] at the time tmax when the quasi
steady-state is reached via (2.36), i.e. while enzymes are actively transforming (turning
over) the substrates [S] to the products [P]. Care should be exercised with (2.48) in
that the MM constant KM is viewed only as a quasi steady-state approximation to
the concentration quotient [E][S]/[ES] at a single point in time t = tmax via KM ≈
{[E][S]/[ES]}t=tmax . In other words, it is not strictly justified to write the equality
in (2.48) at all times viz KM = {[E][S]/[ES]}∀ t ≡ {[E](t)}{[S](t)}/{[ES](t)} for
arbitrary t because the quotient [E][S]/[ES] is not always constant. Rather, this latter
quotient can best approximate the constant KM at only one special instant, t = tmax.

Nevertheless, practice shows that KM estimated from [E][S]/[ES] is nearly constant
also at t �= tR.

Overall, the same expression for reaction velocity v0 from (2.14) or (2.41) is
obtained for two different conditions and these are:
• (2.7) in the Michaelis–Menten model with a quasi-equilibrium for creation-

destruction of the intermediate complex [ES], or
• (2.36) in the Briggs–Haldane model with the existence of the quasi-steady state

of [ES].
The identical final results demonstrate the equivalence of the QE and QSS for-

malisms. Nevertheless, the theoretical framework of the latter is more general than
that of the former formalism.

2.3 Time summation for two irreversible subreactions in enzyme catalysis (the van
Sylke-Cullen theory)

In the TS formalism of van Slyke and Cullen [2], the irreversible version of enzyme
catalysis (2.1) for k−1 = 0 is considered:

[E] + [S] −→k1
[ES] −→k2

[E] + [P] . (2.49)
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Similarly to Michaelis and Menten [1], reaction (2.49) is also viewed by van Slyke
and Cullen [2] as being comprised of two parts whose completion requires total time
ttot. The first part [E] + [S] −→k1

[ES], which necessitates time t1, is an irreversible
formation of the intermediate complex [ES] with the rate constant k1. The second
part [ES] −→k2

[E] + [P] is an irreversible destruction of [ES] with the rate constant k2
for which time t2 is needed. Therefore, the total time ttot for enzyme [E] to complete
the cycle consisting of combining with the substrate [S] into the complex [ES] and
subsequently liberating itself by throwing off the product [P] from [ES], as per reaction
(2.49), is given by the sum of the time intervals consumed by the said two separate
stages:

ttot = t1 + t2 . (2.50)

Time t1 required for the first subreaction [E] + [S] −→k1
[ES] is inversely proportional

to the substrate concentration:

t1 = 1

k1[S] . (2.51)

However, time t2 for the second subreaction [ES] −→k2
[E] + [P] is independent on [S]

and it reads as:

t2 = 1

k2
, (2.52)

so that,

ttot = 1

k1[S] +
1

k2
. (2.53)

On the other hand, time ttot is inversely proportional to velocity v0 of the complete
reaction (2.49) via ttot ∼ 1/v0. Here, the constant of proportionality depends of the
amount of available enzyme [E]0, so that:

ttot = [E]0
v0

. (2.54)

Hence, it follows from (2.53):

v0 = [E]0
(

1

k1[S] +
1

k2

)−1

= vmax[S]
KSC + [S] , KSC = k2

k1
. (2.55)

In this derivation, we have vmax = k2[E]0, as in (2.15). Here, KSC is the van Slyke-
Cullen constant, which can also be deduced from the more general Michaelis–Menten
constant KM in (2.11) for k−1 = 0 via:
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KSC = {KM}k−1=0 . (2.56)

The result (2.55) of van Slyke and Cullen [2] coincides with the Michaelis–Menten
equation (2.14) for the special case k−1 = 0.

2.4 Halved harmonic mean for velocity of enzyme catalysis (Present theory)

The HHM formalism for the general reversible version of enzyme catalysis (2.1) is
based on the concept of the halved harmonic mean, which is known to be the truest
average value in any process governed by rate equations, as is the case with (2.1). The
harmonic mean (average) h of two quantities or functions f and g is defined by:

1

h
= 1

2

(
1

f
+ 1

g

)
or h = 2

f g

f + g
(Harmonic mean) . (2.57)

The so-called effective value denoted by heff is introduced as the halved harmonic
mean:

heff = 1

2
h ,

1

heff
= 1

f
+ 1

g
or heff = f g

f + g
(Effective value). (2.58)

Similarly to the QE and QSS model, the HHM formalism views the whole reversible
reaction (2.1) as being composed of three components. Here, the resultant velocities
are calculated for the associative and dissociative parts of process (2.1). To proceed, it
is convenient to introduce the branching probabilities p1 and p2 for formation of [ES]
via [E]+ [S] −→k1

[ES]with rate k1 and for creation of [P] through [ES] −→k2
[E]+ [P]

with rate k2 relative to the total dissociation rate k2 + k−1 as:

p1 = k1

k↔
, p2 = k2

k↔
, k↔ ≡ k2 + k−1 . (2.59)

Since there is only one associative subreaction [E] + [S] −→k1
[ES], with velocity

v1 ≡ v→ which is directly proportional to substrate concentration [S], we can write:

v→ ≡ vassoc

= k1[E]0[S] . (2.60)

By contrast, there are two dissociative subreactions [ES] −→k2
[E] + [P] and [E] +

[S] ←−k−1
[ES] that develop in time with their respective velocities v2 and v−1, neither

of which is dependent upon substrate concentration [S]. We can define the compound
or resultant velocity v↔ for this twofold dissociation of [ES] as the sum of the corre-
sponding components v2 and v−1 :
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v↔ ≡ vdissoc

= v2 + v−1, v2 = k2[E]0, v−1 = k−1[E]0

= k↔[E]0 . (2.61)

Finally, given that we are here dealing with rate processes, the overall velocity of the
whole reaction (2.1) can be introduced via the effective velocity veff as per (2.58) by
means the halved harmonic mean of velocities v→ and v↔, respectively:

1

veff
= 1

vassoc
+ 1

vdissoc

= 1

v→
+ 1

v↔

= 1

k1[E]0[S] +
1

k↔[E]0 , (2.62)

or equivalently,

veff = v→v↔
v→ + v↔

= k1k↔([E]0)2[S]
k1[E]0[S] + k↔[E]0 , (2.63)

so that,

veff = k↔[E]0[S]
KM + [S] , KM = k↔

k1
, (2.64)

where KM is the same Michaelis–Menten constant (2.11) as in the QE and QSS
formalisms, since k↔ = k−1 + k2 according to (2.59). Finally, the enzyme velocity
v0 is introduced as v0 ≡ p2veff and this becomes:

v0 ≡ p2veff

= k2[E]0[S]
KM + [S] , (2.65)

or alternatively,

v0 = vmax[S]
KM + [S] , vmax = k2[E]0 = v2 . (2.66)

Here, vmax is the maximal value of enzyme velocity with the same definition (2.15)
from the QE and QSS formalisms. Once the formula (2.66) for enzyme velocity v0

123



J Math Chem (2014) 52:1253–1291 1269

becomes available, we can examine the two asymptotic cases for small and large
substrate concentrations relative to KM in the formal limits [S]  KM and [S] � KM,

respectively. This would yield another useful interpretation of the HHM formalism.
Thus, at [S]  KM, it follows that (2.66) simplifies to:

v0 −→[S]KM
vinf , (2.67)

where,

vinf = k[S] , (2.68)

with,

k = vmax

KM
. (2.69)

In the opposite case [S] � KM, the enzyme velocity (2.66) is reduced to the form:

v0 −→[S]�KM
vsup , (2.70)

with,

vsup = vmax , (2.71)

where vmax is from (2.15). Note that the rate constant k from (2.69) can be determined
directly by standard enzyme experiments. The effective reaction velocity v′eff can be
introduced as the halved harmonic mean of the two limiting velocities vinf and vsup
from (2.68) and (2.71):

1

v′eff
= 1

vinf
+ 1

vsup
. (2.72)

This relationship can be cast into the following form by using (2.68) and (2.71):

1

v′eff
= 1

k[S] +
1

vmax
, (2.73)

so that,

v′eff =
vmax{k[S]}
vmax + k[S] =

vmax[S]
KM + [S] . (2.74)

Comparing (2.74) with (2.65) and (2.66), it follows:

v′eff = veff = v0 . (2.75)
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Hence, the effective reaction velocity v′eff from (2.74) derived differently from veff
in the combined opposite limits of lesion concentration [S]  KM and [S] � KM,

coincides exactly with the enzyme velocity v0 from (2.66) or (2.14) in the QE and
HHM formalisms. Moreover, juxtaposing (2.60) to (2.68) and (2.61) to (2.71), we
deduce at once:

v↔ = vinf , v2 = vsup . (2.76)

This shows that enzyme molecules are able to eject the repaired lesions [P] with
maximal velocity v2 = vsup = vmax from the complex [ES] and simultaneously set
themselves free. This occurs in the exit channel via the reaction [ES] −→k2

[E] + [P],
which develops with velocity v2. In the rectangular hyperbola obtained by plotting
v0 as a function of lesion concentrations [S], enzyme velocity v0 levels off as v0 ≈
vmax for [S] � KM. Here, velocity v0 is said to have produced a saturation effect.
This saturation for v0 means that enzyme activity is maximized in the process of
transforming radiation damages to repaired lesions.

2.5 Relative merits of four different formalisms for enzyme catalysis

Although the identical formula (2.14) or (2.55) for velocity v0 is obtained in both
the Michaelis–Menten and van Slyke-Cullen derivations, the two formalisms differ in
the assumed modalities of the same mechanism. The Michaelis–Menten mechanism
for enzyme catalysis (2.1) is based on an equilibrium established rapidly between
formation of the intermediate compound via [E] + [S] −→k1

[ES] and its destruction
through [ES] −→k2

[E] + [P], where KM = (k−1 + k2)/k1 is the equilibrium constant.
Stated equivalently, Michaelis and Menten assume that the reaction:

[E] + [S] �
k1

k−1
[ES] , (2.77)

is practically always at the thermodynamic equilibrium. This effectively amounts to
supposing that k2  k−1 in which case KM = (k−1+k2)/k1 ≈ k2/k1 = KSC. On the
other hand, the van Slyke-Cullen mechanism for enzyme catalysis via (2.49) assumes
the existence of an irreversible intermediate step with formation of the complex [ES].
This implies k−1 = 0 from the outset.

Briggs and Haldane [3], while examining the theoretical basis of enzyme catalysis,
concluded that both the Michaelis–Menten and the van Slyke-Cullen assumptions are
unnecessarily restrictive. To overcome these restrictions, a more general assumption
was introduced in Ref. [3] for enzyme catalysis yielding the Briggs-Haldane mech-
anism, which is based upon the concept of a quasi-steady state of the intermediate
complex [ES]. According to this mechanism, concentration [ES](t) is nearly station-
ary (time-independent) implying the condition (d/dt)[ES](t) ≈ 0 for the existence of
a quasi-steady state of the intermediate compound [ES]. The meaning of this extremal
or stationary condition, which gives the Michaelis–Menten equation (2.14), is that in
a steady state of [ES], enzymes [E] are seen as being at maximal activity in converting
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[S] to [P]. The actual amount of enzyme molecules [E] in a steady state of [ES] is
provided by the quotient [E][S]/[ES]. This latter ratio is recognized as the second of
the two definitions (2.11) and (2.48) of the rate constant KM. By comparison, in the
Michaelis–Menten mechanism, the same constant KM from (2.10) also tells us how
much of enzyme [E] is contained in [ES], but at the thermodynamic equilibrium of
the intermediate complex.

The significance of the Briggs–Haldane model is in establishing the Michaelis–
Menten equation on a firmer theoretical basis with an enhanced flexibility for exten-
sions to more complicated multicycle chemical reactions catalyzed by enzymes involv-
ing more than one substrate and intermediate complex molecules, as well as inhibitors
and/or co-inhibitors. Indeed, it is the Briggs–Haldane quasi-steady state formalism,
which conveys the contemporary and more general essence of the Michaelis–Menten
equation for enzyme catalysis.

The Briggs-Haldane, the van Slyke-Cullen and the present models for enzyme
catalysis were analyzed here not just to state these three alternative derivations of the
MM equation. Rather, this was done primarily to highlight that the identical expression
(2.14) could be rationalized by at least four different explanations of basically the same
mechanism through which reaction (2.1) develops in time:

k2  k−1 : Reversibility; Quasi− equilibrium, or QE (Michaelis−Menten [1]), (2.78)
k−1 = 0 : Irreversibility;Time summation, or TS (van Slyke− Cullen [2]), (2.79)
d

dt
[ES] ≈ 0 :Reversibility; Quasi− stationary state, or QSS (Briggs− Haldane [3]), (2.80)

veff : Reversibility; Halved harmonic mean, or HHM (Present) . (2.81)

And even such a fourfold explanation is not the sole reason from comparing these four
formalisms associated with (2.78)–(2.81). The real motivation for such a comparison
is to emphasize the fact that the van Slyke-Cullen modality was pivotal for putting
forward the QSS framework by Briggs and Haldane.

Briggs and Haldane [3] judiciously connected the two main limitations (2.78) and
(2.79) in Refs. [1] and [2], respectively. Specifically, the van Slyke-Cullen starting
premise of reducing a more involved reaction (2.1) to its simpler counterpart (2.49), as
a model for enzyme catalysis, gave an opportunity to Briggs and Haldane to introduce
a generalization of the QE and TS formalisms of Michaelis and Menten [1] and van
Slyke and Cullen [2] by proposing the QSS model. This was achieved by realizing that
the van Slyke and Cullen re-derivation of the same formula (2.14) for reaction (2.49)
implies that the main working hypothesis (2.78) of Michaelis and Menten about the
existence of a quasi-equilibrium via (2.7) is, in fact, unnecessary. This observation of
Briggs and Haldane was further supported by the fact that the condition k2  k−1
of Michaelis and Menten is impossible to verify through measurements. Namely,
as pointed out by Briggs and Haldane, the experimental data on the time course of
reaction (2.1) can give no information about a relationship between the rate constants
k2 and k−1. As such, those in favor of the QE formalism could object to the TS
platform for its restriction to an irreversible enzyme catalysis (2.49). Likewise, those
supporting the TS formalism could criticize the QE framework for being applicable
only to equilibrium-characterized enzymatic reactions via (2.77), especially given that
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not all enzyme-catalyzed reactions proceed through the said equilibrium. The rescue
by Briggs and Haldane is in preserving the good parts of both Refs. [1] and [2]. This
is, first of all, the MM equation from Ref. [1] and the possibility to place doubt on
the necessity of the existence of a quasi-equilibrium, as implicit in Ref. [2]. Finally,
rather than using a weaker condition (2.79) to place doubt on a stronger limitation
(2.78), Briggs and Haldane, resorted to a more general quasi-steady state formalism
of Bodenstein [13] to simultaneously lift both restrictions inherent in Refs. [1] and [2].
This is the case since the quasi-stationary state condition (2.80) leads straight to the
MM equation (2.14), but without invoking either (2.78) or (2.79). For this reason, the
adaptation of the QSS formalism in the work of Briggs and Haldane [3] bypasses the
assumption k2  k−1 and k−1 ≡ 0 of the QE and TS formalisms, respectively. In other
words, the QSS formalism can be applied to reversible enzyme catalysis reactions with
or without the potentially existing equilibrium. Moreover, by simply setting k−1 = 0,

the QSS formalism remains valid for irreversible reactions, as well.
Like the QSS model, the present HHM formalism also lifts the Michaelis–Menten

(k2  k−1) and the van Slyke and Cullen (k−1 ≡ 0) constraints. Advantageously, the
HHM formalism considers the reversible reaction (2.1) in a much simpler way than in
the work of Briggs and Haldane [3] by exploiting the fact that the harmonic mean is the
truest average value among all the averages for any rate phenomena. This circumstance
permits a direct identification of enzyme velocity v0 as the branched halved harmonic
mean of the limiting velocities for the two characteristic and sharply distinct pathways
of enzyme catalysis. One pathway corresponds to the beginning of the development
at the earliest time near the onset of catalysis when enzyme velocity is linearly depen-
dent on substrate concentration [S]. The other pathway occurs significantly later at
substrate concentrations that are much larger than the equilibrium concentration KM
and at which enzyme velocity attains a constant value. The attractiveness of the HMM
formalism is in capturing these two dominant features of enzyme catalysis in a single
formula for the enzyme effective velocity veff without the need to ever set and solve
any kinetic rate equation, let alone a system of four coupled Eqs. (2.19)–(2.22) from
the QSS model.

2.6 Time evolution as complete progress curves in integrated rate equations

Standard enzyme kinetic experiments do not directly measure the reaction rates.
Instead, concentrations of substrate [S](t) or product [P](t) are measured as func-
tions of time. Therefore, in order to directly compare the same type of data acquired
by both experiment and theory, it is necessary to integrate the modeled rate equations.
In this way, the theory too would give the complete progress curves that are the con-
centrations as functions of time. In the first sentence of their paper, Michaelis and
Menten [1] stated that the ultimate goal of studying enzyme kinetics is to determine
the complete time course of catalysis. To obtain the time evolution of e.g. the substrate
concentration in reaction (2.1), they integrated Eq. (2.14) where the term k2[E]0 is
vmax, according to (2.15). This important final step was also accomplished by van
Slyke and Cullen [2], who through a different and independent derivation obtained the
equivalent result (2.55) for reaction (2.49).

123



J Math Chem (2014) 52:1253–1291 1273

2.6.1 Exponential and linear asymptotic progress curves for low and high substrate
concentrations

For a general, unspecified relationship between [S] and KM, the MM equation (2.14)
does not have a definite order which stems from the degree of the invoked polynomial
in variable [S]. This is because the binomial 1/(KM + [S]) itself is a series with
infinitely many powers [S]k (k = 0, 1, 2, 3, · · · ). However, the situation is simplified
in the two asymptotic cases of low and high substrate concentrations. In Subsect.
2.4, these asymptotic cases have already been considered in terms of the reaction
velocity v0 at the idealized limits [S] → 0 and [S] → ∞. The results (2.67) and
(2.70) for the two asymptotes of v0 at very low and high substrate concentrations can
be interpreted to also represent the equivalent limits [S] � KM and [S]  KM that
are more realistically encountered in experimental measurements than [S] → 0 and
[S] → ∞, respectively. Thus, for [S]  KM, the MM Eq. (2.40) is seen to be of the
first-order:

d[S]
dt
≈ −k[S], [S]  KM , (2.82)

with the solution:

[S](t) ≈ [S]inf(t), [S]inf(t) = [S]0e−kt , [S]  KM. (2.83)

As such, at [S]  KM, we have [S](t) ≈ [S]inf(t), where [S]inf is a single exponential
with the damping k = vmax/KM taken from (2.69).

On the other hand, when [S] � KM, the MM Eq. (2.40) becomes of zero-order
([S] raised to zeroth order, i.e. [S]0 = 1):

d[S]
dt
≈ −vmax, [S](t)� KM , (2.84)

whose solution reads as:

[S](t) ≈ [S]sup(t), [S]sup(t) = [S]0 − vmaxt, [S](t)� KM. (2.85)

Here, the asymptote [S](t) ≈ [S]sup(t) for [S] � KM represents a linear progress
curve versus t. The intercept of [S]sup from (2.84) with the ordinate at t = 0 is the
initial substrate concentration [S]0, whereas the slope of this progress curve is the
saturation rate vmax. We also have the proper limit of [S]inf(t) and [S]sup(t) at t = 0 :

[S]inf(0) = [S]sup(0) = [S](0) = [S]0 . (2.86)

These asymptotic relations for [S]  KM and [S] � KM can also be written directly
in terms of enzyme velocity v0, since v0 = −d[S]/dt according to (2.44). Thus, Eqs.
(2.82) and (2.84) can equivalently be stated as:

v0 ≈ k[S], [S]  KM , (2.87)
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and

v0 ≈ vmax, [S] � KM , (2.88)

respectively.

2.6.2 The Lambert W0 function for exact progress curves at arbitrary substrate
concentrations

• The use of the definition of the Lambert W0 function involving the logarithm

To obtain the time evolution of e.g. the substrate concentration, without any further
approximation, we integrate Eq. (2.40). Such a direct integration of Eq. (2.40) is
possible because of separation of the time variable t from the substrate concentration
[S] :

∫
d[S]KM + [S]

[S] = −vmax

∫
dt ,

so that,

KM ln [S] + [S] = −vmaxt + C . (2.89)

Here, the integration constant C is found by applying the initial condition (2.23) to
(2.89) at t = 0 for the substrate concentration [S](0) = [S]0, so that:

C = KM ln [S]0 + [S]0 . (2.90)

This completes the derivation of the primitive function (2.89), which is usually called
the integrated rate equation:

− vmaxt = KM ln
[S]
[S]0 + [S] − [S]0 . (2.91)

Thus, the exact solution (2.91) is given in a nonlinear implicit form relative to the
dependent variable [S]. This means that the independent variable t is given as a function
of the dependent variable [S]. Such a reverse role of the dependent and independent
variables is precisely opposite to what is encountered in explicit functions that express
a dependent variable in terms of an independent variable. To pass from (2.91) onto the
field of explicit functions, it would be necessary to write [S] by means of a function
F(t) which, as a function of the independent variable t, could contain some constants,
but not the dependent variable [S]. With this aim, we first rewrite (2.91) as:

ln (σM[S])+ σM[S] = ln h(t) (2.92)
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with,

ln h(t) ≡ ln (σM[S]0)+ σM[S]sup , (2.93)

where [S]sup is taken from (2.85) and σM is the reciprocal of the MM rate constant:

σM = 1

KM
= k1

k−1 + k2
. (2.94)

With the help of the identities:

ln h(t)= ln (σM[S]0)+ σM[S]sup= ln
(

eln (σM[S]0)+σM[S]sup
)
= ln

(
σM[S]0eσM[S]sup

)
,

we can extract h(t) as:

h(t) = σM[S]0 eσM[S]sup = σM[S]0 eσM([S]0−vmaxt) . (2.95)

The exponential in (2.95) is always non-negative for any time t and, moreover, the
physical concentrations [S]0 and KM are also positive or zero, so that:

h(t) ≥ 0, ∀ t . (2.96)

Using (2.85) and (2.95), the expression (2.91) can be rewritten via:

ln (σM[S])+ σM[S] = ln
(
σM[S]0 eσM[S]sup

)
. (2.97)

This transcendental equation can be solved exactly in the explicit form of the Lambert
W function defined by [18,19]:

W (x)eW (x) = y . (2.98)

An equivalent definition for W (x) also exists in terms of the natural logarithms via:

ln W (x)+W (x) = ln y . (2.99)

In the case of real x, there are only two real-valued Lambert functions, one of which
is the principal branch W0(x) and the other is denoted by W−1(x). All the remaining
branches Wk(k = 1,±2,±3, · · · ), as the roots of Eq. (2.98), are complex-valued.
The Lambert function W (x) will be the principal branch W0(x) if W (x) ≥ −1, for
x ∈ [−1/e,+∞] :

W (x) = W0(x) if W (x) ≥ −1 and x ∈ [−1/e,+∞] . (2.100)
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Moreover, if x ≥ −1 and the independent variable of W is xex , we have the following
useful relation:

W0(xex ) = x if x ≥ −1 . (2.101)

The asymptotic behaviors of the Lambert W0 function at small and large values of real
and non-negative x are given by:

W0(x) ≈x→0 x − x2 ≈x→0
x

1+ x
, (2.102)

and,

W0(x) ≈x→∞ ln x − ln (ln x) , (2.103)

respectively. We shall also need the differentiation rule of the Lambert W function as
prescribed the two equivalent expressions:

dW (x)

dx
= e−W (x)

1+W (x)
, x �= −1

e
, (2.104)

and,

dW (x)

dx
= W (x)

x [1+W (x)]
, x �= 0, x �= −1

e
. (2.105)

Comparing (2.97) with definition (2.99) of the Lambert W function, we can deduce:

[S] = [S](t) = 1

σM
W0

(
σM[S]0 eσM[S]sup

)
, (2.106)

= 1

σM
W0

(
σM[S]0 eσM([S]0−vmaxt)

)
, (2.107)

or equivalently, by means of (2.93):

[S] = [S](t) = 1

σM
W0(h(t)) . (2.108)

This shows that the mentioned unique explicit function F(t) indeed exists and is pro-
portional to the Lambert function, F(t) ∝ W0(h(t)). The solution (2.107) is unique,
as indicated by the specification W (h(t)) = W0(h(t)). In (2.107), the principal branch
W0 is chosen for W for the reason which runs as follows. First of all, the independent
variable h(t) of W is always non-negative for every t, as per (2.96). Further, all physi-
cal concentrations must be positive and finite, so that [S](t) > 0 and KM > 0, as well
as σM > 0. Therefore, the equality in (2.107) implies W0(h(t)) ≥ 0. Non-negativity

123



J Math Chem (2014) 52:1253–1291 1277

of the Lambert function W (x) for real non-negative x implies W (x) = W0(x), where
W0 is the principal branch. Hence, since h(t) ≥ 0, we have W (h(t)) = W0(h(t)):

W
(
σM[S]0 eσM([S]0−vmaxt)

)
= W0

(
σM[S]0 eσM([S]0−vmaxt)

)
≥ 0. (2.109)

The obtained result [S](t) = σ−1
M W0(h(t)) = σ−1

M W0(σM[S]0 eσM[S]sup) for the time
evolution of the substrate concentration can be checked by taking the first derivative
with respect to time of both sides of Eq. (2.107) as:

d[S]
dt
= 1

σM

d

dt
W0(h(t)) = 1

σM

{
d

dh(t)
W0(h(t))

} {
dh(t)

dt

}
. (2.110)

By using the differentiation rule (2.105) for the Lambert function and the first derivative
of the auxiliary function h(t), it follows:

d

dh(t)
W0(h(t)) = 1

h(t)

W0(h(t))

1+W0(h(t))
,

dh(t)

dt
= −σMvmaxh(t) . (2.111)

This yields:

d[S]
dt
= 1

σM

{
d

dh(t)
W0(h(t))

} {
dh(t)

dt

}

= KM

{
1

h(t)

W0(h(t))

1+W0(h(t))

} {
−vmax

KM
h(t)

}

= −vmax
KMW0(h(t))

KM + KMW0(h(t))

= −vmax
[S]

KM + [S]
so that,

d[S]
dt
= −vmax

[S]
KM + [S] , (QED) (2.112)

which is the MM Eq. (2.40) where k2[E]0 is equal to vmax in accord with (2.15). Note
that in a previous application [20,21] of the MM formalism to dose-effect curves, the
implicit Eq. (2.91) was used with k−1 = 0 (KM = KSC) and solved numerically for
the cell surviving fraction.

• The use of the definition of the Lambert W0 function involving the exponential

In an alternative derivation, we employ (2.85) to express (2.91) as:

ln
[S]
[S]0 = −

[S] − [S]sup

KM
. (2.113)
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With the help of (2.113), we can obtain the following transcendental equation involving
exponentials instead of logarithms from (2.92):

σM[S] eσM[S] = σM[S]0 eσM[S]sup . (2.114)

Making use of the definition (2.98) of the Lambert function, we can immediately
identify the following result for the root [S] of the transcendental Eq. (2.114):

[S] = [S](t) = 1

σM
W0

(
σM[S]0 eσM[S]sup

)
, (2.115)

in agreement with (2.106). The importance of the relation (2.113) is in showing that
the measure or degree of the departure of the complete solution [S](t) from its high-
substrate asymptote [S]sup, i.e. the difference [S](t) − [S]sup is proportional to the
difference between the logarithm of the initial concentration ln [S]0 and ln [S](t), i.e.
[S](t)− [S]sup = σM{ln [S]0− ln [S](t)}. On the other hand, the logarithmic function
is the slowest decreasing function with augmentation of its independent variable. This
fact, alongside Eq. (2.113), implies that [S](t) will tend very slowly to its asymptote
[S]sup at high substrate concentrations. Such a feature is common to both the reaction
velocity v0 through its rectangular hyperbola (2.14) and the integrated rate Eq. (2.113).

2.7 Logarithm of the complete progress curve as the Lambert W0 function with the
factored asymptote at high substrate concentrations

Within the MM formalism, it is important to establish a direct link between the com-
plete progress curve in its exact and asymptotic forms [S](t) and [S]sup(t). It is clear
that (2.91) already exhibits a link between [S](t) and [S]sup(t), albeit in the form of an
iterated exponential condensed in the independent variable of the Lambert function,
W0(σM[S]0 eσM[S]sup). However, it would be instructive if at least a part of this link
could be factored out. A hint towards this goal is provided by (2.91), which shows
that the difference [S](t) − [S]sup(t) is proportional to the logarithm of the quotient
[S](t)/[S]0, i.e. [S]−[S]sup = −KM ln ([S]/[S]0). Let this latter difference be denoted
by [BM] :

[BM] ≡ [S] − [S]sup , (2.116)

= −KM ln
[S]
[S]0 . (2.117)

From here, the substrate concentration [S](t) can be written in terms of the quantity
BM(t) as:

[S](t) = [S]0e−σM[BM] . (2.118)

123



J Math Chem (2014) 52:1253–1291 1279

In this notation, the integrated MM rate Eq. (2.91) becomes:

−vmaxt = KM ln
[S]
[S]0 + [S] − [S]0

= −[BM] + [S]0e−σM[BM] − [S]0
= −[BM] − [S]0

{
1− e−σM[BM]

}
,

so that,

vmaxt = [BM] + [S]0
{

1− e−σM[BM]
}

. (2.119)

This equation can equivalently be rewritten as:

[BM] + [S]sup − [S]0e−σM[BM] = 0 , (2.120)

which also follows from the definition (2.116) via BM(t) = [S]−[S]sup, when (2.116)
is used for [S]. The unknown quantity in this implicit transcendental equation is the
function BM(t). The specific form (2.119) is of the type of the following transcendental
equation:

z − q1 − q2e−q3z = 0 , (2.121)

which has the exact explicit solution:

z = q1 + 1

q3
W

(
q2q3e−q1q3

)
, (2.122)

where W is the Lambert function from (2.98) or (2.99). When comparing (2.120) with
(2.130) and identifying:

z = [BM]
q1 = −[S]sup = vmaxt − [S]0

q2 = [S]0
q3 = σM

⎫⎪⎪⎬
⎪⎪⎭

, (2.123)

it follows,

[BM] = −[S]sup + 1

σM
W0

(
σM[S]0eσM[S]sup

)
, (2.124)

or more explicitly,

[BM] = vmaxt − [S]0 + 1

σM
W0

(
σM[S]0eσM([S]0−vmaxt)

)
. (2.125)
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The reason for having the principal branch W0 for the Lambert W is given earlier in
connection with (2.108). Solution (2.124) can be verified by inserting the definition
[BM] = [S](t)− [S]sup(t) from (2.116) into the lhs of (2.124) to write:

[S](t)− [S]sup = −[S]sup + 1

σM
W0

(
σM[S]0eσM[S]sup

)
, (2.126)

which gives,

[S](t) = 1

σM
W0

(
σM[S]0eσM[S]sup

)
, (2.127)

in agreement with (2.91). The explicit result (2.124) for the function [BM] exhibits an
additive separation of the first-order kinetic term −[S]sup for high-substrate concen-
tration and the rest W0(σM[S]0eσM[S]sup) which is itself dependent upon [S]sup.

When the alternative and equivalent definition (2.117) is used for [BM] in the lhs
of Eq. (2.124), we have:

[S](t) = [S]sup(t)M(t) , (2.128)

where,

M(t) = eσM[S]0 −W0(σM[S]0eσM[S]sup) . (2.129)

At t = 0, we have [S]sup(0) = [S]0, as in (2.86), so that:

M(0) = eσM[S]0 −W0(σM[S]0eσM[S]0) = eσM[S]0 − σM[S]0 = 1 .

Here, relation W0(xex ) = x from (2.101) is used and, therefore:

M(0) = 1 . (2.130)

This reduces Eq. (2.129) to [S](0) = [S]0, as the correct limit to the initial condition
(2.23).

The compact result (2.128) expresses the complete progress curve [S](t) in a form
which factors out the high-dose asymptote [S]sup(t), as a multiplicative term. In such
a factorization, the remainder M(t) is the exponential function containing the Lam-
bert function W0(σM[S]0eσM[S]sup), which is also given in terms of [S]sup(t). There-
fore, neither (2.124) nor (2.128) can fully isolate a clear-cut contribution of the first-
order kinetics through a single term [S]sup(t). Rather, the factored term [S]sup(t)
in (2.124) and (2.128) is accompanied by the [S]sup−dependent Lambert function
W0(σM[S]0eσM[S]sup). The impossibility to single out the contribution of a pure first-
order kinetics, with the rest being totally independent of it can be traced back to the
fact that the rate equations of the MM kinetics (2.19)–(2.22) are of mixed order (zero,
first and second) and, hence, inseparable, i.e. coupled.
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Overall, the asymptote [S]sup(t) at high substrate concentrations is seen to be the
main constituent of the exact progress curve [S](t). This dependence of [S](t) on
[S]sup(t) is succinctly contained in the Lambert function W0(σM[S]0eσM[S]sup). How-
ever, if the Lambert function were unknown, the first thing which would come to
mind while solving the transcendental Eqs. (2.91) and (2.120) is an iterative self-
substitution. Thus, we could insert [S]sup+ KM ln ([S]0/[S]) in place of [S] in the rhs
of Eq. (2.91) to arrive at the first iteration. Subsequently repeating the same proce-
dure with the outcome from the first iteration, we would obtain the expression for the
second iteration:

[S] = [S]sup + KM ln
[S]0
[S]

[S] = [S]sup + KM ln
[S]0

[S]sup + KM ln
[S]0
[S]

[S] = [S]sup + KM ln
[S]0

[S]sup + KM ln
[S]0

[S]sup + KM ln
[S]0
[S]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.131)

An entirely similar iterative self-substitution could also be applied to the transcendental
Eq. (2.120), which would give:

[BM] = −[S]sup + [S]0e−σM[BM]
[BM] = −[S]sup + [S]0eσM[S]sup − σM[S]0e−σM[BM]

[BM] = −[S]sup + [S]0eσM[S]sup − σM[S]0eσM[S]sup − σM[S]0e−σM[BM]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(2.132)

These formulae for [S](t) or [BM] still represent implicit, transcendental equations
because the sought solution [S](t)or [BM] appear on the rhs of Eqs. (2.131) and (2.132).
However, this is only an apparent obstacle, since the iterative approximations, that are
accurate to any preassigned degree of precision, could be obtained by truncating the
self-substitution at a given step, as customarily done with continued fractions [22].
Moreover, there are many continued fractions that can be summed up explicitly to yield
a number of the existing elementary and/or special functions. The outlined continued
fractions generated from (2.91) and (2.120) is an example of exactly summable iterative
self-substitutions in the form of the Lambert W0 function. The advantage of giving the
final result for [S](t) and [BM] in terms of the Lambert function is in the fact that this
function possesses a number of very useful properties, such as the asymptotic behaviors
at small as well as large values of its independent variable, power series expansions with
the known convergence radius, etc. Furthermore, recognizing the Lambert function in
the outlined continued fractions is also of great practical usefulness due to the existence
of a number of efficient and accurate algorithms for numerical computations of [S](t)
or [BM] to any fixed accuracy [22,23].
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3 Repair by the Michaelis and Menten enzyme catalysis

An application of the formalism of Sect. 2 to the problem of repair in cell survival
is possible with a few straightforward specifications. To this end, substrate [S] will
be relabeled by [L], which is the concentration of lesions that are the DNA substrate
molecules. Likewise, product [P] shall be relabeled by [R], which is the concentration
of repaired lesions. The notation [E] for the concentration of enzyme molecules will
remain unaltered. Moreover, the irreversible version (k−1 = 0) of enzyme catalysis
(2.1) will be considered, i.e. reaction (2.49). As such, lesion repair mediated by enzyme
catalysis of the type of Michaelis–Menten, or equivalently, van Slyke-Cullen, can
schematically be written as:

[E] + [L] −→k1
[EL] −→k2

[E] + [R] . (3.1)

For this reaction, the system of Eqs. (2.19)–(2.22) takes the form:

d[L]
dt
= −k1[E] [L] (3.2)

d[E]
dt
= −k1[E] [L] + k2[EL] (3.3)

d[EL]
dt
= k1[E] [L] − k2[EL] (3.4)

d[R]
dt
= k2[EL] , (3.5)

and the initial conditions at t = 0 are,

[L](0) = [L]0, [E](0) = [E]0, [EL](0) = [EL]0, [R](0) = [R]0. (3.6)

Then under the QSS approximation, the velocity (2.14) for reaction (3.1) is:

v0 ≡ dR

dt
= −dL

dt
= vmax[L]

K̃M + [L]
, (3.7)

where vmax is the maximal enzyme velocity given by (2.15) and K̃M is the Michaelis–
Menten constant, which is for k−1 = 0 identical to the van Slyke-Cullen constant
KSC, as per (2.55) and (2.56):

K̃M = k2

k1
, K̃M = KSC. (3.8)

The integral of the differential equation dL/dt = vmax[L]/(K̃M + [L]) in (3.7) is
deduced from (2.127) as:

[L](t) = 1

σ̃M
W0

(
σ̃M[L]0eσ̃M[L]sup

)
= 1

σ̃M
W0

(
σ̃M[L]0eσ̃M[L]0−kt

)
, (3.9)
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where,

[L]sup(t) = [L]0 − vmaxt , (3.10)

and,

σ̃M = 1

K̃M
, k = σ̃Mvmax = vmax

K̃M
. (3.11)

Assuming, as usual, that the initial number of lesions [L]0 is proportional to the
absorbed dose, we write:

[L]0 = k0 D , (3.12)

where,

k0 = 1

D0
. (3.13)

Here, D0 or D37 is the dose defined as the dose at which the survival fraction SF(D) is
reduced by a factor of 1/e ≈ 0.37, or by ∼37 %. This definition stems from a purely
exponential decay law for the cell survival probability, SF(D) = e−D/D0 , where at
D = D0 we have SF(D0) = 1/e. Using (3.12) and choosing t to be equal to the repair
time tR, we set:

{[L](t)}[L]0=k0 D,t=tR ≡ [L(D)] . (3.14)

With this convention, Eq. (3.10) can be written as the following expression:

[L(D)] = K̃MW0(yD) , (3.15)

where,

yD = λM DeλM D−ωR , (3.16)

and the three-parameters {K̃M, λ, ω} of the lesions [L(D)] are:

K̃M = k2

k1
, λM = k0

K̃M
, ωR = ktR . (3.17)

The three parameters {K̃M, k, tR} could, in principle, be directly accessible to in vitro
experimental measurements. Therefore, ωR as the product of two observables k and
tR can also be deduced from experimental data. Alternatively, it might also be conve-
nient to introduce the equivalent set of three parameters {α, β, γ } that can directly be
connected to {K̃M, λM, ωR} via:

α = k0e−ωR , β = k0γ, γ = α

K̃M
,

β

γ
= k0 = 1

D0
, (3.18)
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to cast (3.15) to the form:

[L(D)] = α

γ
W0

(
γ DeβD/α

)
. (3.19)

3.1 The integrated Michaelis–Menten model for cell survival

Quantity [L(D)] represents the biological effect in the integrated version (3.15) of
the MM formalism and, therefore, the underlying theory will hereafter be called the
“Integrated Michaelis–Menten” (IMM) model:

[L(D)] ≡ E(IMM)
B (D) , (3.20)

where,

E(IMM)
B (D) = α

γ
W0

(
γ DeβD/α

)
. (3.21)

Supposing that the Poisson distribution is applicable to a random generation of lesions,
the surviving fraction in the IMM model can be written in terms of the three-set
parameters {α, β, γ } as:

S(IMM)
F (D) = e−E(IMM)

B = e−(α/γ )W0(γ DeβD/α) . (3.22)

The equivalent expressions for the biological effect and cell surviving fraction, given
by way of the parameters {K̃M, λM, ωR} take their respective forms:

E(IMM)
B (D) = K̃MW0

(
λM DeλM D−ωR

)
, (3.23)

S(IMM)
F (D) = e−K̃MW0(λM DeλM D−ωR ) . (3.24)

In the IMM model, the repair time tR plays a very important role, as it is used for
differentiating between repairable and irreparable lesions. Thus, if at least one unre-
paired lesion is still present at the time t such that t ≥ tR, the cell is considered as
being dead. This means that enzymes could not repair (i.e. remove) the last remaining
lesion at the critical time t = tR. In other words, the IMM model assumes that there
is a finite time tR <∞ for which all the lesions formed at t < tR must be repaired in
order for the irradiated cell (or an organism) to survive. Such a survival is the proof that
the repair process by enzyme catalysis was not saturated. Here, the term “saturated”
refers to the ability of enzymes to bind to lesions. A situation in which enzymes could
not bind any longer to lesions signifies saturation of enzymes with lesions. Hence, if
the enzymatic repair is saturated, any remaining lesion would become irreparable (i.e.
lethal) and, as such, would yield the cell death with certainty.

For easy and extremely fast computations of the Lambert W0 function, several freely
available and powerful numerical algorithms exist in the literature [24–27]. They have
recently been complemented by very accurate analytical expressions for the Lambert
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function [28,29]. Such closed formulae are useful in practice not only for the IMM
model, but also for the recently proposed “Pool Repair Lambert” (PRL) model [30].

3.2 Low-dose approximation

At small values of the absorbed dose D, variable yD from (3.16) in (3.15) is also small,
in which case we can use the asymptotic formula (2.102) of the Lambert function as
W0(yD) ≈ yD(1 − yD) ≈ yD/(1 + yD). This, together with the accompanying
approximation eλM D ≈ 1+λM D at small D, will cast the biological effect (3.21) and
the surviving fraction (3.22) from the IMM model into the forms:

E(IMM)
B (D) ≈

D→0
E(PLQ)

B (D) , (3.25)

and,

S(IMM)
F (D) ≈

D→0
S(PLQ)

F (D) . (3.26)

Here, E(PLQ)
B (D) and S(PLQ)

F (D) are the biological dose and cell surviving fraction in
the Padé linear-quadratic, or alternatively, the differential Michaelis–Menten model
as abbreviated by PLQ and DMM, respectively:

E(PLQ)
B (D) = αD + βD2

1+ γ D
= E(DMM)

B (D) , (3.27)

and,

S(PLQ)
F (D) = e−

αD+βD2

1+γ D = S(DMM)
F (D) . (3.28)

Hence, at low doses, the biological effect E(IMM)
B (D) and the surviving fraction

S(IMM)
F (D) in the IMM model coincide with the corresponding quantities E(PLQ)

B (D)

or E(DMM)
B (D) and S(PLQ)

F (D) or S(DMM)
F (D) from the PLQ or DMM model.

3.3 High-dose approximation

At high doses D, variable yD from (3.16) in (3.15) likewise becomes large, so that it
is appropriate to employ the asymptote (2.103) for the Lambert function as W0(yD) ≈
lnyD − ln(lnyD) from (2.103). This gives:

S(IMM)
F (D) ≈

D→∞

(
ln yD

yD

)K̃M

=
(

ln λM DeλM D−ktR

λM DeλM D−ktR

)K̃M

123



1286 J Math Chem (2014) 52:1253–1291

=
(

1− ktR
D
+ ln λM D

λM D

)K̃M

evmaxtR−k0 D

≈
(

1+ ln λM D

λM D

)K̃M

evmaxtR−k0 D

so that the high-dose asymptote of the surviving fraction becomes:

S(IMM)
F (D) ≈

D→∞ n

(
1+ ln λM D

λM D

)k0/λM

e−k0 D , (3.29)

where,

ln n = vmaxtR = ωR . (3.30)

The corresponding asymptotic form of the biological effect E(IMM)
B (D) = − ln S(IMM)

F
reads as:

E(IMM)
B (D) ≈

D→∞ (k0 D − ln n)− k0

λM
ln

(
1+ ln λM D

λM D

)
. (3.31)

The term ne−k0 D in (3.29) represents the usual proper high-dose asymptote of
surviving fractions. There is also the extra multiplicative binomial term {1 +
(λM D)−1 ln λM D}k0/λM in (3.29). However, the limiting value of this latter contri-
bution is equal to 1, on account of limy→1 y−1 ln y = 0, so that:

lim
D→∞

(
1+ ln λM D

λM D

)k0/λM

= 1, lim
D→∞

ln λM D

λM D
= 0 . (3.32)

As a consequence, the surviving fraction S(IMM)
F (D) exhibits the required correct

high-dose asymptotic behavior:

S(IMM)
F (D) ≈

D→∞ ne−D/D0 , (3.33)

where k0 = 1/D0 from (3.13) is used.

3.4 Initial and final slopes

Using (2.106), we can extract the initial (si) and final (st) slopes si = lim
D→0

E(IMM)
B (D)

and sf = lim
D→∞E(IMM)

B (D) in the IMM model as:

Initial slope ≡ si = k0

n
, (3.34)
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and,

Final slope ≡ sf = k0 = 1

D0
, (3.35)

where, on account of the relation n > 1, we have:

Initial slope (si) < Final slope (sf) , (3.36)

as it should be.

4 Results and discussion

The performance of the IMM models is presently tested by comparisons with experi-
mental data for cell surviving fractions. The full-effect plots, or the Fe-plots, are also
used in these testings. As to surviving fractions, a relatively satisfactory agreement
can be obtained at lower doses by using a number of quite different radiobiological
models. Simultaneously, however, the same theoretical results when displayed by way
of the Fe-plots could exhibit strikingly different behavior. This is most remarkably
evidenced within the LQ model which is reasonably accurate for dose-effect curves
at small doses, but often flagrantly fails for the Fe-plots. Moreover, even regarding
surviving fractions, the LQ model breaks down at larger doses. These features are illus-
trated in Figs. 1 and 2 where the overall performance of the LQ and IMM models is
assessed. It is seen from these figures that the IMM model provides the most favorable
agreements with the measurement, as opposed to the LQ model. These illustrations
deal explicitly with acute doses that are instantaneously delivered. However, equally
remarkable superiority of the IMM model over the LQ model is also encountered when
doses are administered through fractions.

5 Conclusions

The ultimate success of radiotherapy will be determined by the way in which cell
repair is understood and accordingly incorporated into the modern dose-planning sys-
tems, particularly for fractionation schedules with high-dose-per fraction and high-
dose rates. This key role of repair originates from the fact that the dose required
to inactivate a cell is determined not only by the extent of the primary chemical
damage and imparted lesions, but also by the overall capacity of the cell and its
microenvironment to recover from the radiation insult and restore the proliferation
function.

The presently introduced biophysical theory of cell repair after radiation damage
has several notable advantages over the other available radiobiological models. The
most important advantage of the proposed Integrated Michaelis–Menten model, or
IMM, is its foundation in the well-established second-order Michaelis–Menten chem-
ical kinetics for reactions involving interactions of the cell with radiation. In these
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Fig. 1 Cell surviving fractions SF(D) as a function of radiation dose D in Gy. Experimental data (symbols)
[31]: the mean clonogenic surviving fractions SF(D) for Chinese hamster V79 cells irradiated by 50 kVp X-
rays. Theories: full line: IMM (Integral Michaelis–Menten) model and dashed line: LQ (Linear Quadratic)
model

reactions, alongside the readily understood pathway of direct cell inactivation by sin-
gle radiation events, the channel of damage repair, which plays the most critical role,
represents the greatest challenge for radiobiological models. The major goal of the
present study is to explore Michaelis–Menten enzyme catalysis as the most efficient
mechanism of damage repair. This approach is enhanced by recourse to the recent
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Fig. 2 The Full-effect (Fe) plot from the cell surviving fractions as given by the product of the reciprocal
dose 1/D and the negative natural logarithm of SF(D) on the ordinate versus D as the abscissa: Fe(D) ≡
−(1/D) ln(SF) = R(D). Experimental data (symbols) [31]: the corresponding values for Chinese hamster
V79 cells irradiated by 50 kVp X-rays. Theories: solid curve: IMM model and dashed curve: LQ model

advances in applied mathematics through exact, analytical solutions of transcenden-
tal equations that represent the integrated rate equations of the underlying chemical
kinetics.

The IMM model is valid at any absorbed dose, from low through intermediate to
high irradiation exposures. Such a property is particularly important for dose-planning
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systems in hypofractionated radiotherapy, such as stereotactic radiotherapy, stereotac-
tic body radiotherapy and high dose-rate brachytherapy. The current dose-planning
systems for these newer radiotherapies are still dominated by the linear quadratic
model, despite its repeatedly demonstrated inadequacy at high doses. It appears nec-
essary to amend this practice and adopt much more adequate theoretical descriptions
for cell survival, such as the IMM model stemming from a clear and proper mechanis-
tic formalism of chemical kinetics for Michalelis-Menten enzyme catalysis of repair
of different kinds of radiation damage.
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29. Dž. Belkić, Theory and practice with the transcendental Lambert W function in interdisciplinary
research: introduction of a highly accurate single analytical formula. J. Math. Chem. (2013, submitted)
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