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Abstract Repair of radiation damaged cells can be carried out through their interac-
tions with intracellular substances that can supply the needed energy for repair. These
substances may be viewed as forming a pool of repair molecules that through chemi-
cal reactions with lesions can lead to cell recovery from the initial radiation insult by
deposition of dose D. Presently, time evolution of mean concentrations of interacting
substances is obtained by solving the corresponding rate equations given by a coupled
system of second-order non-linear differential equations that are imposed by the mass
action law. For cell surviving fractions after irradiation, the most important quantity
is the time-dependent concentration of lethal lesions. Our main working hypothesis
is that pool substances are capable of repairing the inflicted injury to any cell mole-
cules, including deoxyribonucleic acid which is generally viewed as the most critical
target of radiation. The previous solution of these rate equations is only formal as it
is expressed by yet another equation of an implicit, transcendental form. In the ear-
lier applications, this formal solution has only been tackled by numerical means that,
however, have no connection with any of the myriad of the usual explicit forms of
cell surviving fractions. This drawback effectively discouraged researchers from fur-
ther explorations of the otherwise attractive pool methodology. Such a circumstance
is unfortunate in light of a clear and advantageous radiobiological interpretation of
the parameters of this theoretical formalism of chemical kinetics.The present study
is aimed at rescuing the pool methodology by solving the underlying transcendental
equation for lethal lesions uniquely, exactly and explicitly in terms of the principal
value Lambert W0 function. This is a single-valued and dose-dependent function,
which can be readily and accurately computed either from the available fast numerical
algorithms or by employing the existing simple closed expressions with a quotient of
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elementary, logarithmic functions. Another distinct advantage of this analytical result
is the known behaviors of W0 at small and large doses. This permits an easy and
immediate identification of the final D0 (or D37) dose and the extrapolation number
n. Such a circumstance offers new possibilities within the presently proposed “Pool
Repair Lambert” (PRL) model for analysis of problems encountered in assessing cell
survival after exposure to various modalities of radiation, including different schedules
(acute, fractionated) for the same radiation quality. Importantly, the PRL model is uni-
versally applicable to all doses with a smooth passage from low through intermediate
to high doses. As to applications in radiotherapy, this feature is particularly important
for treatment schedules with high-doses per fraction as in stereotactic radiosurgery
and stereotactic body radiotherapy.

Keywords Radiobiological models · Repair pool molecules · Lambert function ·
Chemical kinetics · Rate equations · Dose planning systems · Hypofractionated
radiotherapy

1 Introduction

This study is on the theory of chemical kinetics for cell repair after irradiation. In
cellular radiobiology, the principal targets are deoxyribonucleic acid (DNA) molecules
because of their central role in the genetic makeup of the cell, cell reproductivity
through division, etc. The biological end-point of analyzing the impact of radiation
can be very different e.g. chromosome aberration, clonogenic activity, etc. Radiation
damage or lesion could also be multifaceted, such as single- and double-strand breaks
(SSB, DSB) of DNA molecules, etc. Throughout the present work, potentially lethal
lesions will be defined as repairable SSBs and DSBs of DNA molecules.

By contrast, one of the formulations of the linear-quadratic (LQ) model based on
a molecular description of cell survival assumes that DSBs cause cell death [1–4].
However, many experiments over the last four decades have confirmed that DSBs can
be repaired [5–9]. Various repair systems exist within and outside the cell. Repair is
considered as being successfully completed within a definite time interval if the repro-
ductive capacity of the cell could be restored. In radiobiology, cell death is understood
in a restricted sense to mean cell reproductive death or mitotic death, which is loss of
the cell’s ability to divide i.e. to generate clones and, thus, to form colonies. Repro-
ductively dead cells could still perform some metabolic functions even for a long time
after irradiation.

Among the most important effects of radiation at the cellular level is reduction of the
clonogenic ability relative to the unirradiated portion of the cell population. This can be
quantified by the dose-effect relationship through a survival curve, which expresses
the fraction of the cell population with the retained clone-forming capability. The
related observable is cell surviving fraction which is denoted by SF(D) and graphed
on a semi-logarithmic plot as a function of the absorbed physical dose D. Cell survival
curves and/or some other related quantities derived from SF(D), e.g. biological effect,
biologically effective dose or relative effectiveness, are very useful in radiotherapeutic
treatment of cancer.
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Discrepancies among various shapes of function SF(D) are connected with the dif-
ferences between the effects of radiation on tumor and normal cells. This offers the
possibility of modifying the shapes of the cell surviving fractions and the treatment
regimens (e.g. a larger number of smaller fractions, a smaller number of larger frac-
tions, etc.) so as to increase the therapeutic ratio and thus achieve the best clinical
outcomes. Conventional fractionated radiotherapy with the total dose D split as 2 Gy
per fraction for 5 days per week during 1 month permits cellular recovery or repair.
This implies that, while attempting to find a scientifically-based justification of the
preferential modification of the shape of SF(D) for optimal fractionation schedule, the
focus should be placed on shoulders of survival curves and on the physical as well as
biochemical processes governing cell repair.

The concept of repair by way of a metabolic pool is helpful for studying cell
survival from the viewpoint of chemical kinetics. The notion of a pool refers to a pool
or a reservoir of molecules that are unspecified chemical compounds (constituents or
states) capable of undoing radiation-induced damage to the cell by counter-reactions
[10–15]. In other words, these pool molecules from the cell environment (which is
also irradiated) can induce metabolic processes involving the irradiated cell with the
outcome of having repaired cells. In addition to a direct injury, cells can also be
damaged indirectly by radicals created by radiation from surrounding water molecules.
One of the ways in which a pool molecule can partially protect cells from radiation is to
counteract this indirect effect of radiation by donating hydrogen atoms to radicals so as
to neutralize their affinity for deleterious binding to DNA. The pool concept suggests
that an increase in the dose yields a decreased ability of the irradiated organism or a
single cell to cope with injuries i.e. damages. Such a diminished ability is assumed to
arise whenever a pool of repair molecules has been either used up i.e consumed for
recovery or was destroyed by radiation.

With these assumptions, it is easy to imagine how this pool notion would yield a cell
surviving fraction exhibiting a shouldered response curve. Here, with an augmented
dose, an increased fraction of the irradiated cell population at risk would eventually
lose all its repair capacity. This implies that the cell survival curve at high doses should
reduce to a single exponential. At low doses many lesions would be repaired, whereas
as soon as the pool becomes depleted i.e. when the last molecule from the pool is either
used up for repair or destroyed by radiation, any subsequent irradiation could lead to
cell death. Cell death, nevertheless, need not occur, since the pool could be replen-
ished through metabolic refilling by synthesis and thus again become available for the
subsequent round of recovery. Such a replenishment of the pool effectively restores
the shoulder in the radiation survival curve. This pattern is reminiscent of the Elkind–
Sutton repair for the regimen of fractionated irradiation [16,17]. Overall, the pool
concept reflects the effect of the changes in the environment of the irradiated cell. The
essence of these changes is that they are capable of modifying the biological end-point
of radiation which is presently taken to be cell survival i.e. the cell’s capacity to divide
and thus proliferate. The significance of the shoulder in the cell response curve is
that it truly represents a measure or degree of reversing radiation damage through
cell repair by pool molecules, enzyme catalysis or any other recovery pathways.
The concept of cell repair mediated by pool molecules has originally been proposed
by Powers [10] on a descriptive level, without any specified kinetic rate equations.
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Subsequently, similarly to the development of various versions of the hit-target model,
Orr and colleagues [11–15] formalized the Powers’ pool concept [10] using certain
first- and second-order rate equations from chemical kinetics to introduce three vari-
ants of different levels of sophistication.

Repair cannot occur without an energy supplier. One of the most versatile energy
supplier to endergonic reactions (reactions that absorb energy) in the cells is adenosine
triphosphate (ATP). In fact, all that was said about the repair capabilities of some
unspecified pool molecules could equally be re-stated in terms of any other energy
reservoir or an energy pump, which might furnish energy to the cell for repair. In such
a case, cell repair would be re-activated as soon as the energy pumping systems has
been refilled. In the pool methodology, it is not necessary to specify the type of pool
molecules nor to clarify whether the energy pumping systems are directly or indirectly
connected to radiation.1 Rather, it is necessary to assess the importance of the effect
of saturation and/or exhaustion of a generic repairing pool or energy pump as a result
of the time development of some chemical processes that lead to certain metabolic
changes in the irradiated cell. This is an alternative mechanism to the hit-target models
[23,24] or to any of the existing interpretations of LQ model [1–4,25–31].

2 Chemical kinetics, rate constants and reaction velocities

Chemical kinetics, as a very important branch of chemistry, deals with rates at which
chemical reactions proceed. This versatile research field describes interactive dynam-
ics in systems comprised of separate molecules or molecular compounds that can react
with each other. In such processes, the interacting species are called reactants. There
might be more than two reactants in a given chemical reaction.

Interactions among the reactants can transform all or some of the reactants into
entirely different species. Some of the reactants can emerge unaltered from chemi-
cal reactions in which, however, they could play a key role. An example is enzyme
catalysis, in which enzyme molecules can interact with other reactants (one or more
substrates). The outcome of such interactions can be one or more products, that are
different from any of the substrates. Yet, the enzymes themselves complete the entire
reaction chain emerging intact i.e. without undergoing the slightest change in their
structure, concentration, etc.

Concentrations of reactants vary with time. Thus, all chemical reactions develop
with a certain speed. As such, rates are the quantities that represent a measure of
the efficiency of transformations from reactants to products. This is quantified by
expressing a reaction rate k or a reaction velocity v as the quotient of an infinitesimal
change in the concentration d[p](t) of the given product [p](t) and an infinitesimal
increment dt in time t :

v ∝ d[p](t)
dt

. (2.1)

1 Radiation itself is an energy supplier which, as such, could invoke some metabolic changes in the cell,
including repair of radiation-inflicted damage. This pathway represents radiation-induced recovery which
was extensively investigated in Refs. [18–22].
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In other words, the reaction velocity is proportional to the first derivatives of con-
centration with respect to time (velocity ∝ d[p](t)/dt). Such derivatives for each
participant involved in a path of a given chemical reaction are equated to a combi-
nation (linear or non-linear) of concentrations of reactants. This gives rate equations,
where the coefficients multiplying every concentration in these linear or non-linear
superpositions are called the rate constants. For n reactants, there will be n rate equa-
tions that are coupled together.

From the mathematical viewpoint, given that only the first derivatives are involved
with regard to the unknowns, these rate equations represent coupled first-order ordinary
non-linear differential equations. In general, the rate equations are non-linear because
the mentioned superpositions may involve the unknown concentrations raised to a
power different from 1. Rate equations can be of the mth order, if the given concen-
tration is raised to the mth power in the said superposition of concentrations. Most
frequent are the zero-, first- and second-order rate equations in which the reaction
velocities are proportional to the zero, first and second power of concentrations of
the involved molecules denoted by X , Y , Z, etc. For example, second-order kinetics
also refer to those chemical reactions with a product [X][Y] of two different concen-
trations. The special case Y = X of equal molecules corresponds to second-order
kinetics involving [X][X] = [X]2.

Terminology of the mixed-order kinetics is also used for cases involving differ-
ent powers of concentrations in linear or non-linear combinations of concentrations
equated to the given velocities in rate equations. Similarly, the rate constant can be of
e.g. the second-order if it multiplies either the term [X]2 or [X][Y]. Accordingly, the
units of e.g. the first- and second-order rate constants are different, the former being
e.g. in units (M/g)−1, whereas the latter in (M/g)−2, where M/g denotes mole per
gram (mol/gram). Rate equations are set up by using the mass action law. This law
dictates that the rate at which a chemical reaction proceeds is directly proportional to
the product of the concentrations of the reactants.

3 Rate constants for lesion production, recovery and cell death

We shall introduce this notation for concentrations of various types of lesions per cell:

[a](t) = concentration of potentially lethal lesions,
[b](t) = concentration of lethal lesions,
[c](t) = concentration repaired lesions,
[p](t) = concentration of non-lethal lesions of pool molecules.

The rate constants of different transformations governed by chemical processes
induced by radiation-cell interactions are:

k0 = rate constant of increase in type ′′a′′ lesions per unit dose at time t = 0 ,

k1 = rate constant of the cell kill reaction [a](t) → [b](t) ,

k2 = rate constant for the cell repair reaction [a](t) → [c](t).
Equivalently, rate k0 can be defined through the reciprocal of the “final D0 dose” via:

k0 = 1

D0
. (3.1)
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The final D0 dose represents the dose at which the survival fraction SF(D) is reduced
by a factor of 1/e ≈ 0.37, or by ∼37 % on the final, terminal portion of the dose-effect
curve dominated by the purely exponential inactivation SF(D) ∼ e−D/D0 . It is for this
reason that D0 is equivalently denoted by D37. Such a reduction refers to any part
of the terminal straight line in the semilogarithmic plot of SF(D) versus D e.g. from
0.1 to 0.037 or from 0.01 to 0.0037, etc. The notion of D37 is associated with the
assumption of the exponential decay law specifically at high doses for the cell survival
probability, SF(D) = e−D/D0 , where at D = D0 we have SF(D0) = 1/e ≈ 0.37.
The same operational or geometrical meaning of D0 is also used within the hit-target
models [25–28] and indeed throughout cell radiobiology. A hit is a radiation event (e.g.
ionization in collisions of the given particle beam with DNA molecules), whereas a
target is a radiation-sensitive part of the cell. The simplest version of the hit-target
theory is the single-target and single-hit (ST-SH) model [25], where the surviving
fraction is given by S(ST−SH)

F (D) = e−D/D0 at all doses. This model takes no account
of cell repair so that every single direct hit is assumed to be recorded by the cell
as lethal. Thus, the ST-SH model describes the cell as a counting detector with no
dead time. In other words, within the classical hit-target theory lesions proportional to
dose D are viewed as irrepairable. By contrast, as will be shown in Sect. 5.4, lesions
proportional to dose D are repairable in the description by the PRL model.

Hereafter, concentrations of molecules as functions of time t will interchangeably
be denoted by:

y(t) ≡ [y(t)] ≡ [y](t) ≡ [y]t ≡ [y] (y = a , b , c , p). (3.2)

Pool substances ′′ p′′ represent both repair molecules and lesions. This is because
pool molecules can also be damaged by radiation. Moreover, we shall assume that all
the ′′ p′′ lesions are repairable. Further, it will be supposed that whenever the pool of
intracellular molecules is exhausted, it can subsequently be replenished by e.g. synthe-
sis and thus become again available for repair of radiation-induced damage. The restric-
tion to the non-lethal ′′ p′′ lesions alone and the limitation to a single repair system (i.e.
one repair pathway) could readily be relaxed, but with the price of significantly increas-
ing the number of parameters. However, the aim of the present mechanistic study is to
deal with the minimal number of parameters that can be measured experimentally so as
to acquire a clear biological as well as clinical meaning, interpretation and, hopefully,
usefulness. While furthering a mechanistic radiobiological model based upon chemi-
cal kinetics and rate equations, we will still retain the goal of having a relatively small
number of parameters (3 in the present work). This is in accordance with the general
principle of parsimony: the smaller the number of estimation parameters the better,
within reason. More specifically, for any type of modeling, be it mechanistic or phe-
nomenological (empirical, fitting), the larger the set of parameters {p1, p2, p3, . . .} to
be estimated from experimental data, the more demands on computation for eventually
achieving an acceptable accuracy of {p1, p2, p3, . . .}, the more stringent imposition
on measurements for validation of {p1, p2, p3, . . .} or related quantities.

The rate constant k2 for transformation a → c is the rate at which ′′a′′ is reduced to
′′c′′ per unit of ′′a′′. The rate k1 of decrease of ′′a + p′′ will be assumed to be a dose-
independent constant throughout the time development of the type ′′a′′ lesions. Further,
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for convenience, we shall assume that a single dose D is delivered instantaneously
at time t = 0. These are the so-called acute doses as opposed to fractionated dose
delivery. The rate constant k2 could be obtained by considering all lesions on which
the recovery process can act. These are the type ′′a′′ and ′′b′′ lesions.

A generic working hypothesis of all pool-based models is that every increment of
dose D yields more new ′′a′′ and ′′ p′′ lesions. Moreover, it is assumed here that the
rate for the transformation a → b is dependent solely on the concentration of the type
′′a′′ lesions. This gives the following linear first-order rate equation for time evolution
of concentration [b](t) :

d[b](t)
dt

= k1[a](t). (3.3)

These are general remarks that are independent of the order of chemical kinetics
for lesion production, cell repair and cell death. They will be supplemented by cer-
tain specific features in the next section which explicitly deals with the second-order
kinetics for rate equations for time development of concentrations of molecules and
chemical compounds.

4 Second-order kinetics for cell repair by pool molecules

Here, we shall make use of the second- or mixed-order kinetics to establish a mech-
anistic basis of lesion repair by means of a pool of molecules from the cell envi-
ronment. This formalism employs Eq. (3.3) together with the assumption that with
every increment of dose D, new lesions ′′a′′ and ′′ p′′ will be produced. Addi-
tionally, during the conversion ′′a′′ → ′′b′′ (creation of lethal lesions), a realistic
possibility will be allowed by which the rate for the competitive reaction a →
c (formation of repaired lesions) could decrease even when the amount of ′′a′′ is kept
fixed. Such a decrease is due to the consumption of the pool molecules that are needed
for repair of potentially lethal lesions ′′a′′. Thus, more and more of the radiation-
induced lesions ′′a′′ (and eventually all of them if the pool ′′ p′′ is completely depleted
by consumption in repair) will be converted to the lethal lesions ′′b′′. Consequently,
the rate of production of lethal lesions per unit dose will rise to a maximal value with
increased dose, thus yielding the final straight-line segment of the logarithmic survival
curve as a continuation of the initial shoulder at lower doses. Overall, a description of
the branching by which the repaired lesions ′′c′′ can be independently produced from
both the ′′a′′ and ′′ p′′ states, in fact, necessitates an explicit introduction of the product
[a](t)[p](t) of the corresponding concentrations into the rate equations for the mean
number [a](t) and [c](t). This will give the second-order kinetic equations for [a](t)
and [c](t).

4.1 Kinetic rate equations involving lesions and pool molecules

Using the mass action law, which governs the mass balance i.e. mass conservation in
a chemical reaction, we can set up the following system of mixed-order kinetic rate
equations:
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d[a](t)
dt

= −k2[p](t)[a](t) − k1[a](t) , (4.1)

d[b](t)
dt

= k1[a](t) , (4.2)

d[c](t)
dt

= k2[p](t)[a](t) , (4.3)

d[p](t)
dt

= −k2[p](t)[a](t) , (4.4)

with the initial conditions at t = 0 :

[a]0 = k0 D, [b]0 = 0, [c]0 = 0, [p]0 = p0 , (4.5)

where p0 is the initial concentration of pool molecules that are available for repair at
time t = 0. Dose D plays the role of a parameter for system (4.1)–(4.4) where time t
is the independent variable. In analogy with (3.3), we can cast Eq. (4.1) into the form:

d[a](t)
dt

= −k(t)[a](t), (4.6)

where,

k(t) = k1 + k2[p](t). (4.7)

In the first-order kinetics with pool repair molecules from earlier studies [11,13–
15], the rate coefficient k(t) in Eq. (4.6) was a material constant k = k1 + k2, i.e.
a time-independent parameter. By contrast, in the present second-order kinetics of
cell repair by pool molecules, the rate coefficient k(t) = k1 + k2[p](t) in Eq. (4.1),
rewritten as Eq. (4.6), is not a constant, as it explicitly depends on time t through
concentration [p](t) of pool molecules [12].

4.2 Analytical solution of the system of kinetic equations by means of the Lambert
function

The coupled system of differential equations (4.1)–(4.4) can be solved exactly in the
analytical form by first expressing [a](t) from Eq. (4.2) as:

[a](t) = 1

k1

d[b](t)
dt

. (4.8)

Then by inserting (4.8) into Eq. (4.4), we have:

d ln[p](t)
dt

= −ρ
d[b](t)

dt
, (4.9)

where ρ is the quotient of the rates for the repair process and the development of a
lethal lesion:
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Repair capacity or RC : ρ = k2

k1

= Rate of cell repair

Rate of cell kill
. (4.10)

Constant ρ is a measure of the repair capacity (RC) of a repairing system, which is
presently taken to be a pool of intracellular molecules. Conversely, the reciprocal of ρ

denoted by η can be interpreted as the repair incapacity (RI) of the repairing system:
the smaller η, the smaller capacity of intracellular pool molecules to repair damage
of the irradiated cell:

Repair incapacity or RI : η = 1

ρ
= k1

k2

= Rate of cell kill

Rate of cell repair
. (4.11)

The rate constants k1 and k2 appearing in the relative radiosensitivity ρ from (4.10)
are usually not measured experimentally in a direct way. However, by using the identity
k2/k1 = (k2/k0)/(k1/k0), we can rewrite (4.10) and (4.11) as:

ρ = gr

fu
, η = fu

gr
, (4.12)

where fu and gr are the experimentally measurable fractions of unrepaired (u) i.e.
lethal and repaired (r) lesions, respectively:

fu = k1

k0
(Fraction of unrepaired or lethal lesions)

gr = k2

k0
(Fraction of repaired lesions)

⎫
⎪⎬

⎪⎭
. (4.13)

Here, radiosensitivity k0 can equivalently be conceived as the total inactivation
probability, which is given by the sum of the two partial probabilities for cell repair
(k2) and cell death (k1) as follows:

k0 = k1 + k2 ∴ fu + gr = 1. (4.14)

Maximal probability is equal to unity which upon division of both sides of equation
k0 = k1 + k2 is decomposed into its two fractions fu and gr according to fu + gr = 1,

as in (4.14). Overall, irrespective of whether using k2/k1 or its identical counterpart
gr/ fu for the same quantity in (4.10) or (4.12), respectively, ρ has a clear meaning of
a branching ratio for the two underlying processes involving the cell repair and cell
kill mechanisms.

By integrating differential equation (4.9), we obtain the result:

ln[p](t) = −ρ[b](t) + ln C1, (4.15)
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where the integration constant C1 can be determined by substituting the initial condi-
tions (4.5) into (4.15), so that:

C1 = p0. (4.16)

Inserting this constant into Eq. (4.15), it follows:

[p](t) = p0e−ρ[b](t). (4.17)

Further, with the help of (4.8) and (4.17), we can write Eq. (4.3) for [c](t) as:

d[c](t)
dt

= ρp0

{
e−ρ[b](t)} d[b](t)

dt
. (4.18)

Acting upon both sides of this equation by the operator
∫

dt gives:

∫
d[c](t) = ρp0

∫
e−ρ[b](t)d[b](t) + C2

∴ [c](t) = −p0e−ρ[b](t) + C2

}

, (4.19)

where C2 is the integration constant. Using the initial condition [c]0 = 0 from (4.5),
it follows:

C2 = p0, (4.20)

so that,

[c](t) = p0

{
1 − e−ρ[b](t)} . (4.21)

The relationship (4.8) is also useful when (4.8) and (4.17) are inserted into the rhs
of Eq. (4.1) and integrated to yield:

∫
d[a](t) = − ∫ {

1 + ρp0e−ρ[b](t)} d[b](t) + C3

∴ [a](t) = p0e−ρ[b](t) − [b](t) + C3

}

. (4.22)

With the initial conditions [a]0 = k0 D and [b]0 = 0 from (4.5), the integration
constant C3 becomes:

C3 = k0 D − p0, (4.23)

and, therefore,

k0 D = [b](t) + p0

{
1 − e−ρ[b](t)} + [a](t) , (4.24)

123



J Math Chem (2014) 52:1201–1252 1211

where k0 D ≥ 0 and the rhs is positive or 0 for t ≥ 0. Using (4.21), the result from
(4.24) can be written as:

[a](t) = k0 D − [c](t) − [b](t). (4.25)

On the other hand, by adding together Eqs. (4.1), (4.2) and (4.3), we are led to:

d

dt
{[a](t) + [b](t) + [c](t)} = 0. (4.26)

Integration of (4.26) with the initial conditions from (4.5) yields:

[a](t) + [b](t) + [c](t) = k0 D, (4.27)

in agreement with (4.25). According to (4.17), the exponential p0e−ρ[b](t) on the rhs
of Eq. (4.21) is equal to [p](t) so that:

[c](t) = p0 − [p](t). (4.28)

This shows that the concentration of repaired lesions [c](t) is equal to the difference
between the concentrations of pool molecules at the onset of the repair reaction (t = 0)

and that at the subsequent time t . Of course, this does not mean that [c](t) is
independent of [a](t) and [b](t). Quite the contrary, [p](t) is determined by both
[a](t) and [b](t). This can be seen by inserting [c](t) = a0 − [a](t) − [b](t)
from the mass balance expression (4.27) into the lhs of Eq. (4.28) to arrive at
[p](t) = p0 − {(a0 − [a](t)) − [b](t)}, where a0 ≡ [a]0 = k0 D so that:

[p](t) = p0 − [p′](t), [p′](t) = [a′](t) − [b](t), [a′](t) = a0 − [a](t). (4.29)

Here, the formal difference [p′](t) = [a′](t) − [b](t) can be identified in another
way by inserting the increment [p](t) = p0 − [p′](t) of the concentration of pool
molecules into the rhs of Eq. (4.28) with the result [p′](t) = [c](t). Thus, the auxiliary
quantity [p′](t) from (4.29) is, in fact, equal to the concentration of repaired lesions
[c](t) at time t . Moreover, relation [p′](t) = [c](t) maps expression [p](t) = p0 −
[p′](t) from (4.29) into formula [p](t) = p0−[c](t), which coincides with Eq. (4.28).

As they stand, formulae (4.17), (4.21) and (4.24) for [p](t) , [c](t) and [a](t),
respectively, are all expressed in terms of concentration [b](t) of lethal lesions. How-
ever, [b](t) is unknown. Moreover, it is precisely [b](t) which is the sought main result
of the analysis. Therefore, it would be advantageous to turn these relationships around
and express [b](t) through [a](t). With this goal, we consider the following general
transcendental equation of the type (4.24):

z − q1 − q2e−q3z = 0. (4.30)

Multiplication of this equation by q3e−q1q3 and rearranging yields:

ZeZ = q2q3e−q1q3, Z = q3(z − q1). (4.31)
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This implicit equation can be solved exactly first for Z as:

Z = W
(
q2q3e−q1q3

)
, (4.32)

and subsequently for z with the result,

z = q1 + 1

q3
W

(
q2q3e−q1q3

)
. (4.33)

Here, W is the Lambert function [32,33] defined as the multivalued solution of a
transcendental equation:

W (z)eW (z) = η, (4.34)

where η is a known i.e. given quantity. Another equivalent transcendental equation for
W is obtained by taking the natural logarithm of both sides of (4.34):

ln W (z) + W (z) = ln η. (4.35)

One of the explicit representations of W (z) is this power series which converges
for |z| ≤ 1/e :

W (z) = z − z2 + 3

2
z3 − · · · =

∞∑

m=1

(−m)m−1

m! zm, |z| ≤ 1

e
. (4.36)

For z = x, where x is real, only two branches, denoted by W0(x) and W−1(x),

are real-valued. All the other branches or roots Wk(k = 1,±2,±3, . . .) of Eq. (4.34)
are complex-valued. The Lambert function W0(x) is the principal branch among all
the possible solutions Wk(k = 1,±2,±3, . . .) of Eq. (4.34). Specifically, for x ∈
[−1/e,+∞], we have W (x) ≥ −1, in which case W (x) becomes the principal
branch W0(x) :

W (x) = W0(x) if W (x) ≥ −1 and x ∈ [−1/e,+∞], (4.37)

and, furthermore:

W0(xex ) = x if x ≥ −1. (4.38)

Comparing (4.24) and (4.30) and identifying:

z = [b](t)
q1 = k0 D − p0 − [a](t)

q2 = p0
q3 = ρ

⎫
⎪⎪⎬

⎪⎪⎭

, (4.39)

it follows:

[b](t) = k0 D − p0 − [a](t) + 1

ρ
W0

(
ρp0eρ(p0−k0 D+[a])) . (4.40)
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Here, the principal branch W0 is taken for W because ρp0eρ(p0−k0+[a]) ≥ 0 for any
time t . In this relation, we have [a](t) ≥ 0 because all the physical concentrations are
non-negative quantities. The corresponding time-dependent concentrations of pool
molecules [p](t) and repaired lesions [c](t) are obtained by inserting (4.40) into
Eqs. (4.17) and (4.21) with the results:

[p](t) = p0e−ρ(k0 D−p0−[a])−W0(x) , (4.41)

and,

[c](t) = p0

{
1 − e−ρ(k0 D−p0−[a])−W0(x)

}
, (4.42)

where,

x ≡ x(t) = ρp0eρ(p0−k0 D+[a]) ≥ 0. (4.43)

Due to the randomness of ionizing radiation events, it is customaryto assume that
the distribution of lethal lesions [b](t) in individual cells obeys the Poisson statistics,
so that:

SF(D, t) = e−[b](t). (4.44)

In other words, we suppose that the surviving fraction SF(D, t) of the cell population
with no lethal lesions [b](t) is given by the Poisson probability law. Upon inserting
the result for lethal lesions [b](t) into (4.44), it follows:

SF(D, t) = ep0−k0 D+[a](t)−(1/ρ)W0(ρp0eρ(p0−k0 D+[a])), (4.45)

or equivalently, by way of (4.43),

SF(D, t) = ep0−k0 D+[a](t)−(1/ρ)W0(x). (4.46)

Using (4.44) and [b](t) = − ln SF(D, t), we can equivalently rewrite Eq. (4.24)
as:

k0 D = [a](t) − ln SF(D, t) + p0
{
1 − Sρ

F (D, t)
}
. (4.47)

To solve this transcendental equation, we denote the term p0Sρ
F (D, t) by Y/ρ with:

Y = ρp0Sρ
F (D, t). (4.48)

Equivalently, the surviving fraction SF(D, t) can be expressed in terms of Y as
follows:

SF(D, t) =
(

Y

ρp0

)1/ρ

. (4.49)
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Employing (4.43), we can cast Eq. (4.47) into the following form:

ln Y + Y = ln x . (4.50)

By reference to (4.35), the explicit solution of the implicit equation (4.50) becomes:

Y = W0(x). (4.51)

Returning to the cell surviving fraction by passing from Y to SF(D, t) using (4.49),
we have:

SF(D, t) =
{

W0(x)

ρp0

}1/ρ

, (4.52)

or equivalently,

SF(D, t) =
{

1

ρp0
W0

(
ρp0eρ(p0−k0 D+[a]))

}1/ρ

. (4.53)

Formally, the two derived solutions (4.45) and (4.52) for the same surviving fraction
SF look very different, especially regarding the way in which W0 appears. However,
since the lhs of Eqs. (4.45) and (4.52) represent the same SF, the rhs of these latter
equations ought to be identical, as well, and this gives the condition:

{
W0(x)

ρp0

}1/ρ

= ep0−k0 D+[a]−(1/ρ)W0(x). (4.54)

When both sides of Eq. (4.54) are raised to the power ρ, the following relation is
obtained:

W0(x)

ρp0
= eρ(p0−k0 D+[a])−W0(x). (4.55)

The term eρ(p0−k0 D+[a])−W0(x) in the rhs of this equation is identified as
xe−W0(x)/(ρp0) by way of (4.43). This maps Eq. (4.55) to W0(x)/(ρp0) =
xe−W0(x)/(ρp0), which after multiplication by ρp0eW0(x) reads as:

W0(x)eW0(x) = x, (4.56)

where x is given by (4.43). Expression (4.56) is the definition the Lambert function.
Thus, by assuming that condition (4.54) is fulfilled, the identity (4.56) is obtained.
This shows that the two forms (4.45) and (4.52) of surviving fraction SF are, in fact,
identical to each other, as they must be, and this was set to prove.

As a check of the main result (4.40) for concentration of lethal lesions, we can
employ the initial condition [a]0 = k0 D from (4.5) to calculate the limiting value of
[b](t) as t → 0 :
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lim
t→0

[b](t) = k0 D − p0 − [a]0 + 1

ρ
W0

(
ρp0eρ(p0−k0 D+[a]0)

)

= k0 D − p0 − k0 D + 1

ρ
W0

(
ρp0eρ(k0 D+p0−k0 D)

)

= −p0 + 1

ρ
W0

(
ρp0eρp0

)

= −p0 + p0 ·
{

1

ρp0
W0

(
ρp0eρp0

)
}

= −p0 + p0 · 1 = −p0 + p0 = 0,

where (4.38) is used, so that:

lim
t→0

[b](t) = 0. (4.57)

This is in agreement with the correct initial condition [b]0 = 0 from (4.5), as it
ought to be.

4.3 Asymptotic form of the solution at infinitely large times

Expressions (4.40), (4.41) and (4.42) represent the analytical, closed forms for con-
centrations [b](t), [p](t) and [c](t), respectively, obtained as the exact solutions of the
system of four coupled rate equations (4.1)–(4.4). These results for [b](t), [p](t) and
[c](t) are all expressed in terms of concentration [a](t) of potentially lethal lesions.
However, concentration [a](t) itself cannot be obtained from the system (4.1)–(4.4).
Nevertheless, for the present purpose all that is needed is the set of two particular val-
ues of [a](t), one at t = 0 and the other at t = ∞. These are given by [a]0 = D/D0
and [a]∞ = 0. The corresponding value [b]∞, which is of primary interest, signifies
completion of the whole process after a sufficiently long time has elapsed i.e. when
all the remaining potentially lethal lesions lead to cell death. Such a circumstance
motivates consideration of the asymptotic limits of [a](t), [b](t), [c](t) and [p](t) at
infinitely large times for a fixed dose D. The respective limiting values will be denoted
by [A]D, [B]D, [C]D and [P]D :

lim
t→∞[a](t) = [a]∞ ≡ [A]D, lim

t→∞[b](t) = [b]∞ ≡ [B]D , (4.58)

and,

lim
t→∞[c](t) = [c]∞ ≡ [C]D, lim

t→∞[p](t) = [p]∞ ≡ [P]D , (4.59)

where subscript D indicates that dose D is the independent variable. In analogy with
convention (3.2), concentrations of molecules as functions of dose D will hereafter
interchangeably be labeled as follows:

YD ≡ [YD] ≡ [Y ]D ≡ [Y ] (Y = A , B , C , P). (4.60)
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Further, the limiting value of biological effect EB(D, t) and surviving fraction
SF(D, t) for t → ∞ will be denoted by EB(D) and SF(D), respectively:

EB(D) = lim
t→∞ EB(D, t), (4.61)

and,

SF(D) = lim
t→∞ SF(D, t). (4.62)

As stated, when time t tends to infinity (t → ∞), all the potentially lethal lesions
will disappear i.e. the asymptotic number [a]∞ of the type ′′a′′ lesions will tend to
zero:

[A]D = 0. (4.63)

By taking the limit t → ∞ in the solution (4.40) alongside the relation
limt→∞[a](t) = [a]∞ ≡ [A](D) = 0 from (4.58) and (4.63), we have:

[B]D = k0 D − p0 + 1

ρ
W0

(
ρp0eρ(p0−k0 D)

)
. (4.64)

The associated concentrations of pool molecules PD and repaired lesions CD can
be deduced from (4.41) and (4.42) as:

[P]D = p0e−ρ[B]D = p0e−ρ(k0 D−p0)−W0(xD) , (4.65)

and,

[C]D = p0

{
1 − e−ρ[B]D

}
= p0

{
1 − e−ρ(k0 D−p0)−W0(xD)

}
. (4.66)

Variable xD in the Lambert function W0(xD) is the limit of x(t) form (4.43) as
t → ∞ :

xD = lim
t→∞ x(t), (4.67)

so that,

xD ≡ x0ex0−ρk0 D ≥ 0 , (4.68)

where,

x0 = ρp0. (4.69)

Further, it also appears that x0 is the limiting value of W0(xD) as dose D tends to
zero:

lim
D→0

W0(xD) = x0. (4.70)
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Likewise, the related surviving fraction SF(D) is obtained from the Poisson prob-
ability (4.44) and (4.64) as:

SF(D) = e−[B]D , (4.71)

so that,

SF(D) = ep0−k0 D−(1/ρ)W0(ρp0eρ(p0−k0 D)), (4.72)

or more succinctly,

SF(D) = e−[B]D = ep0−k0 D−(1/ρ)W0(xD). (4.73)

Alternatively, the limit t → ∞ and the boundary condition limt→∞[a](t) =
[a∞] ≡ [A]D = 0 could have also been used in the transcendental equation (4.24),
which would then read as:

k0 D = [B]D + p0

{
1 − e−ρ[B]D

}
. (4.74)

This is of the form of Eq. (4.31) whose solution is given by (4.33). Therefore, with
the appropriate specifications:

z = [B]D

q1 = k0 D − p0
q2 = p0
q3 = ρ

⎫
⎪⎪⎬

⎪⎪⎭

, (4.75)

the solution of (4.74) is identified to be:

[B]D = k0 D − p0 + 1

ρ
W0

(
ρp0eρ(p0−k0 D)

)
, (4.76)

in agreement with (4.64). Thus, the result (4.64), or equivalently, (4.76) for the final
(asymptotic) concentration of lethal lesions [B]D is the same, irrespective of whether
the limit t → ∞ is taken in the implicit transcendental equation (4.74) or in its explicit
solution (4.40), as it must be. The underlying biological assumption of the explicit final
concentration [B]D is that all potentially lethal radiation injuries were transformed to
lethal lesions [A]D = 0 at asymptotic times t → ∞.

Similarly to the analysis at arbitrary times t, we could have alternatively started
directly from Eq. (4.47) for the surviving fraction and take the limit t → ∞ therein.
The pertinent limit [a](t) → 0 for t → ∞ reduces (4.47) to the following equation:

k0 D = − ln SF + p0
{
1 − Sρ

F (D)
}
, (4.77)

which according to (4.52) has the solution,

SF(D) =
{

1

ρp0
W0

(
ρp0eρ(p0−k0 D)

)}1/ρ

. (4.78)
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This expression is identical to (4.73) by reliance upon the relationship:

{
W0(xD)

ρp0

}1/ρ

= ep0−k0 D−(1/ρ)W0(xD), (4.79)

which is the counterpart of (4.54) for t → ∞. Here, we used expression (4.67).

5 The “Pool Repair Lambert” model for cell survival

Quantity [B]D represents the biological effect of radiation in the description of repair
by a pool molecule or a pool energy. In the present derivation, we obtain the exact
and explicit solution of chemical kinetics system (4.1)–(4.4) for the rate equations
in terms of the Lambert transcendental function W0. This formalism, which yields
the biological effect (4.64), will hereafter be called the “Pool Repair Lambert” (PRL)
model:

[B]D ≡ E(PRL)
B (D) , (5.1)

where,

E(PRL)
B (D) = k0 D − F (PRL)

B (D) , (5.2)

and,

F (PRL)
B (D) = p0 − 1

ρ
W0(ρp0eρ(p0−k0 D)). (5.3)

The biological effect E(PRL)
B (D) in (5.2) is the difference between the contributions

from the two inactivation mechanisms: the direct cell kill given by the linear term
k0 D and the molecular pool repair described by the non-linear function F (PRL)

B (D),

respectively. These two contributions are correlated. It is a priori expected that the
repair mechanism itself is affected by the cell inactivation. Indeed, this is reflected in
the cell recovery function F (PRL)

B (D) from (5.3), which correlates with the cell kill
component k0 D through the exponential exp(ρ[p0 − k0 D]) in (4.68) as the indepen-
dent variable xD of W0(xD). Overall, the main significance of Eq. (5.2) is that the level
of the biological effect of radiation is not simply equal to the initial direct damage
k0 D predicted by the ST-SH model [25]:

E(ST−SH)
B (D) = k0 D. (5.4)

Rather, the administered physical dose D is modified by the cell response such
that the starting number of lesions k0 D is reduced by activation of the pool repair
system. The surrounding pool molecules protect the attacked cell by counteracting
the radiation injury to yield the repair function F (PRL)

B (D), which mitigates a part of
damage k0 D as per (5.2).
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As in (4.44), by assuming the Poisson distribution of maximized lethal lesions
[B]D, we can write the surviving fraction in the PRL model as follows:

S(PRL)
F (D) = e−[B]D ≡ e−E(PRL)

B . (5.5)

This can be stated in a more explicit form:

S(PRL)
F (D) = ep0 − k0 D − (1/ρ)W0(ρp0eρ(p0−k0 D)), (5.6)

or equivalently, by way of (4.78),

S(PRL)
F (D) =

{
1

ρp0
W0

(
ρp0eρ(p0−k0 D)

)}1/ρ

. (5.7)

At the asymptotic times t → ∞, the mean number of pool molecules [P]D,

repaired lesions, [C]D, and lethal lesions [B]D, are related to each other by:

[P]D = p0 + [B]D − k0 D, [C]D = k0 D − [B]D. (5.8)

If ρ = 0, there will be no repair by pool molecules, in which case we can deduce:

lim
ρ→0

E(PRL)
B (D) = k0 D − p0 + lim

ρ→0

{
1

ρ
W0

(
ρp0eρ(p0−k0 D)

)}

≈ k0 D − p0 + p0 · lim
ρ→0

{xD/x0}
= k0 D − p0 + p0 · 1

= k0 D − p0 + p0 = k0 D = D

D0
,

where we used the approximation W0(xD) ≈ xD for ρ → 0. The obtained result is
the correct expression for E(PRL)

B (D), when only the exponential inactivation (k0 D =
D/D0) acts on the cell, as expected:

lim
ρ→0

E(PRL)
B (D) = k0 D = D

D0
(No repair by pool molecules). (5.9)

Inserting this expression into (4.17) and (4.21), we have:

lim
ρ→0

[P]D = p0, (5.10)

and,

lim
ρ→0

[C]D = 0. (5.11)
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With no recovery (ρ = 0) i.e. prior to activation of pool molecules in the process
of lesion recovery, the number of these substances is equal to the initial number p0,

as in (5.10). Consequently, in the same limit ρ → 0, the number of lesions by pool
molecules is equal to zero i.e. [C]D = 0, as in (5.11). Further, in the limit p0 → 0,

we find from (4.64):

lim
p0→0

E(PRL)
B (D) = k0 D − lim

p0→0
p0 + lim

p0→0

{
1

ρ
W0

(
ρp0eρ(p0−k0 D)

)}

= k0 D − 0 + 1

ρ
W0(0) = k0 D + 1

ρ
· 0 = k0 D + 0 = k0 D

so that,

lim
p0→0

E(PRL)
B (D) = k0 D = D

D0
. (5.12)

Similarly, it follows from (4.65) and (4.66) that:

lim
p0→0

[P]D = 0, (5.13)

and,

lim
p0→0

[C]D = 0. (5.14)

The limiting values (5.12), (5.13) and (5.14) are correct, since when repair is absent
(ρ = 0), we have [C]D = 0. Moreover, if no pool molecule is present at the onset of
irradiation at t = 0, it follows that p0 = 0. The case (5.14) is trivial, since if the initial
concentration of pool molecules at t = 0 is zero i.e. [p]0 = p0 = 0, it would naturally
be zero at any later time t, so that [p]0 = 0, including limt→∞[p](t) = [P]D = 0.

5.1 The full-effect plot

In addition to the biological effect, there is another useful function which conveniently
describes the influence of radiation on the cell. This function displays the so-named
full-effect (Fe) plot [34,35], which shows a variation of −(1/D) ln SF(D) versus dose
D :

Fe ≡ − 1

D
ln SF(D) (Full effect)

= R(D) (Reactivity). (5.15)

Function Fe(D) is also called the reactivity R(D) because it is one of the represen-
tations for description of the cell reaction to radiation [2,3]. The Fe-plot can convey
important biological information for models that can transparently show the interplay
of the direct cell kill and cell repair mechanisms. Definition (5.15) involves the product
of the dose reciprocal 1/D and the biological effect − ln SF(D) via −(1/D) ln SF(D)

in quantity Fe(D) or R(D).
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In order to make the Fe-plot explicit in the PRL model, expression (5.6) for cell
surviving fraction will be written in the following factorized form:

S(PRL)
F (D) =

{
ne−D/D0

}
M(D), (5.16)

with,

M(D) ≡ e−(1/ρ)W0(xD), (5.17)

where xD is the auxiliary variable from (4.68) and n is the extrapolation number,

n ≡ ep0 , (5.18)

or equivalently, ln n = p0. Parameter n, which is identified solely in terms of the
initial concentration p0 of the pool repair molecules, will be further discussed in
Sect. 5.5 when considering the limit of the surviving fraction S(PRL)

F (D) at large doses
D. Being a concentration, p0 is always non-negative i.e. p0 ≥ 0, which also implies
that ln n ≥ 0. This latter inequality will be satisfied if p0 ≥ 1 :

ln n = p0 ⇐⇒ p0 ≥ 1. (5.19)

By comparison with (5.16), it is pertinent to recall the functional form of the cell
surviving fraction in the multi-target and single-hit (MT-SH) model:

S(MT−SH)
F (D) =

(
1 − e−D/D0

)nT
, (5.20)

and,

S(MT−SH)
F (D) ≈

D→∞ nTe−D/D0 . (5.21)

We see that the term ne−D/D0 in the curly brackets from (5.16) formally coincides with
the asymptotic behavior of S(MT−SH)

F (D) at large doses D. As mentioned, parameter
D0 is the mean lethal dose in the hit-target models where, nT is the extrapolation
number. We have already stated that in the present formalism D0 is not the mean
lethal dose, but only the reciprocal of the final slope k0 of the cell survival curve.
Further, unlike (5.18), the extrapolation number nT in the MT-SH model from (5.21)
is interpreted as the number of the sensitive sites (targets) in the cell, which is expected
to be hit during the inactivation process. Further, as will be shown in Sect. 5.5, the
modifying function M(D) tends to unity as D → ∞, so that the PRL and MT-
SH models formally share the same type of the high-dose asymptotes ne−D/D0 and
nTe−D/D0 , respectively. Nevertheless, when inspecting ne−D/D0 in (5.16) from the
PRL model, given that the extrapolation numbers n and nT have completely different
biological interpretations, any reference to the MT-SH model should be descriptive and
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qualitative as merely a way of a symbolic resemblance of the high-dose asymptotes
of the two otherwise unequal descriptions of radiation-cell interaction.

Applying (5.15) to the cell surviving fraction (5.16) in the PRL model, we have:

Fe(PRL)(D) = − 1

D
ln S(PRL)

F (D) = k0 − 1

D

{

p0 − W0(xD)

ρ

}

. (5.22)

or equivalently,

Fe(PRL)(D) = k0 − F (PRL)
B (D)

D
. (5.23)

The curly brackets in (5.22) is the repair function F (PRL)
B (D) from (5.3). Since

1/D tends to infinity as D → 0, the Maclaurin series expansion of the repair function
F (PRL)

B (D) must not start with a constant term (∼ D0 = 1). This is indeed the

case, since the Maclaurin series for F (PRL)
B (D) contains only the powers Dm (m =

1, 2, 3, . . .), such that its first term (∼ D) cancels D in the denominator from (5.23),
so that the remainder of F (PRL)

B (D) is regular i.e. finite as D → 0.

5.2 Differential equation for cell surviving fractions

The first derivative of the Lambert W (z) function with any independent variable z
(real or complex) is given by:

dW (z)

dz
= W (z)

z {1 + W (z)} , z �= 0. (5.24)

In the present case, z is real-valued, z = xD, where xD is defined in (4.68). To
pass from D to xD variable, we make use of the differentiation chain rule d/dD =
(dxD/dD)(d/dxD), where (d/dD)xD = −ρk0xD and this yields:

dW0(xD)

dD
= −ρk0

W0(xD)

1 + W0(xD)
. (5.25)

Thus, taking the first derivative of S(PRL)
F (D) with respect to D by employing

(5.6) and (5.25), it follows that the surviving fraction in the PRL model satisfies the
following first-order non-linear differential equation with a dose-dependent coefficient
k0/{1 + W0(xD)} :

dS(PRL)
F (D)

dD
= − k0

1 + W0(xD)
S(PRL)

F (D) , (5.26)

for which the initial condition reads as:

S(PRL)
F (0) = 1. (5.27)

123



J Math Chem (2014) 52:1201–1252 1223

If we are given Eq. (5.26) and the initial condition (5.27), the solution S(PRL)
F (D)

could be found by integration, which gives
∫

d ln S(PRL)
F (D) = −k0

∫ {1 +
W0(xD)}−1dD. This equation reduces to the following expression by using the relation
dD = −(ρk0xD)−1dxD :

ln S(PRL)
F (D) = I

ρ
+ C , (5.28)

where C is the integration constant and I is this auxiliary integral:

I =
∫

1

1 + W0(xD)

dxD

xD
. (5.29)

With the help of the identity 1/{1+ W0(xD)} = 1− W0(xD)/{1+ W0(xD)} alongside
Eq. (5.24) via (d/dxD)W0(xD) = W (xD)/{xD(1 + W (xD))}, it follows:

I = ln xD − W0(xD), (5.30)

so that,

ln S(PRL)
F (D) = 1

ρ
{ln xD − W0(xD)} + C. (5.31)

Constant C is determined by setting D = 0 in (5.31) together with using Eq. (5.27)
and expression W0(ρp0eρp0) = ρp0 from (4.38). The result is C = (1/ρ) ln (ρp0)

which, combined with relation ln xD = ln (ρp0)+ρ(p0 −k0 D), casts the result (5.31)
into the form:

ln S(PRL)
F (D) = p0 − k0 D − W0(xD)

ρ

= p0 − k0 D − 1

ρ
W0

(
ρp0eρ(p0−k0 D)

)
, (5.32)

where (4.68) is utilized. This is in agreement with the natural logarithm taken of both
sides of Eq. (5.6), showing that the final result (5.32) is the correct, exact solution of
the non-linear differential equation (5.26) for the cell surviving fraction in the PRL
model.

5.3 Initial and final slopes

Next, we shall derive the two important biological quantities that represent the initial
and final slopes of the dose-response curve in the PRL model. The initial slope si for
any surviving fraction SF(D) is defined by the tangent to the dose-effect curve in the
limit D → 0 :

si ≡ − lim
D→0

dSF(D)

dD
. (5.33)
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In the limit D → 0, the lhs of Eq. (5.26) becomes equal to −si so that:

si = lim
D→0

k0

1 + W0(xD)
S(PRL)

F (D) = lim
D→0

k0

1 + W0(xD)
, (5.34)

where (5.27) is utilized. By reference to (4.70), we have:

lim
D→0

k0

1 + W0(xD)
= k0

1 + x0
, (5.35)

where x0 is given in (4.69) as the maximal value of variable xD from (4.68). This gives
the initial slope from (5.26) as:

si = κ1, κ1 ≡ k0

1 + ρp0
= 1

D0

1

1 + ρp0
(Initial slope). (5.36)

The final slope sf is the tangent to the terminal part of the cell survival curve. If the
given surviving fraction SF is going to exhibit a purely exponential inactivation at high
doses, as in the experimental data, then the logarithmic derivative (d/dD) ln SF(D)

must tend to a constant at D → ∞. Hence, a constant sf is defined by:

sf ≡ − lim
D→∞

d ln SF(D)

dD
. (5.37)

By means of (5.26), this definition takes the following form in the PRL model:

sf ≡ − lim
D→∞

d ln S(PRL)
F (D)

dD
= − lim

D→∞
k0

1 + W0(xD)
. (5.38)

In the limit D → ∞, variable xD = ρp0eρ(p0−k0 D) from (4.68) tends to zero:

lim
D→∞ xD ≡ x∞, x∞ = 0. (5.39)

On the other hand, the Lambert W0(z) function is equal to zero for z = 0 :

W0(0) = 0. (5.40)

Using (5.39) and (5.40), we can see that the limits D → ∞ and xD → 0 are
equivalent to each other, so that limD→∞ W0(xD) = limD→∞ W0(ρp0eρ(p0−k0 D)) =
limxD→0 W0(xD) = W0(0) = 0 and, therefore:

lim
D→∞ W0(xD) = 0. (5.41)

With this value at hand, Eq. (5.38) for the final slope becomes:

sf = κ0, κ0 = k0 = 1

D0
(Final slope). (5.42)
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Since ρ > 0 and p0 > 0, we have 1+ρp0 > 1. Thus, comparing (5.36) and (5.42),
we see that the initial slope is smaller than the final slope, as expected for a non-zero
initial population of pool molecules (p0 �= 0) and for a still active pool repair system
(ρ �= 0) after the cell has absorbed dose D :

Initial slope (si) < Final slope (sf). (5.43)

Moreover, the difference between the final and initial slope is given by:

�sfi ≡ sf − si = κ2 , (5.44)

where,

κ2 = λκ0, λ = ρp0

1 + ρp0
, 0 ≤ λ ≤ 1. (5.45)

Using the definitions of κ1 and κ2, it follows that their sum is equal to κ0 :
κ0 = κ1 + κ2. (5.46)

Although κ1 �= k1 and κ2 �= k2, relation (5.46) is still of the same additive type as
its counterpart k0 = k1 + k2 from (4.14). Further, dividing both sides of Eq. (5.46) by
κ0 we have:

λ + μ = 1, (5.47)

where μ is defined by,

μ ≡ 1

1 + ρp0
, 0 ≤ μ ≤ 1. (5.48)

It is illustrative to consider the biological significance of parameters κ1 and κ2 for
p0 = 0 :

{κ1}p0=0 = k0, {κ2}p0=0 = 0. (5.49)

Thus, if pool repair molecules were not present at the onset of radiation-lesion
interaction (p0 = 0), constants κ1 and κ2 would be reduced to the final slope and zero,
respectively. When repair is active (p0 �= 0), the proportionality constants between
κ j and k j ( j = 1, 2) can be expressed in terms of the measurable quantities { fu, gr} :

κ1 = fu
k0

h
, κ2 = gr

p0k0

h
, (5.50)

where h is the partitioning or branching between the fractions of the unrepaired ( fu)

and repaired (gr) lesions,

h = fu + p0gr. (5.51)
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Using relation k0 = k1 + k2 from (4.14), quantity h can be expressed exclusively
through the repair-based parameters p0 and gr :

h = 1 + (p0 − 1)gr ≥ 1 , (5.52)

where p0 ≥ 1 is used from (5.19). In particular, it is seen from (5.50) that even for the
minute concentration p0 of pool molecules, the cell kill rate k1 would still be reduced
by a factor of h ≥ 1.

In most experimental data for mammalian cells, survival curves exhibit purely
exponential behavior at both small and large doses. This occurs because of the absence
of any appreciable activity of repair systems for two different reasons. In the low-dose
limit, radiation damage is insufficient to trigger a significant activation of any repair
pathway. At high doses, repair molecules are severely damaged and, moreover, the
number of cell lesions is so large that repair systems become overwhelmed and, as
such, are rendered inefficient. In these circumstances, the semilogarithmic surviving
fraction versus D becomes a linear function of dose for small as well as large values of
D. Consequently, in both limits D → 0 and D → ∞, the negative first derivative of
the semilogarithmic surviving fraction with respect to D takes two different constant
values that are, in fact, the initial and final slopes of the dose-effect curve:

si ≡ − lim
D→0

d ln SF(D)

dD
, sf ≡ − lim

D→∞
d ln SF(D)

dD
. (5.53)

This is the case for any radiobiological model with the correct i.e. purely exponential
cell inactivation at small and large doses. In the PRL model, using Eq. (5.26), the
relations from (5.53) are reduced to:

si = lim
D→0

k0

1 + W0(xD)
, sf = lim

D→∞
k0

1 + W0(xD)
. (5.54)

This immediately gives the end results (5.36) and (5.42) for the initial and final
slopes on account of (5.35) and (5.41) for the limits D → 0 and D → ∞, respectively.

5.4 Asymptotic behavior of surviving fraction at the lowest doses

At extremely low doses (D → 0), a negligible error is invoked by retaining only the
first two terms in the Maclaurin expansion of W0(xD) around D = 0. This leads to
the approximation:

W0(xD) ≈
D→0

ρp0 − λρk0 D , (5.55)

where constant λ is given in (5.45). Inserting this result into Eq. (5.3) gives the first-
order approximation F (1)

B (D) to the repair function F (PRL)
B (D) via:

F (PRL)
B (D) ≈

D→0
F (1)

B (D) , (5.56)
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with,

F (1)
B (D) = κ2 D, (5.57)

where parameter κ2 is defined in (5.45). To highlight that F (1)
B (D) is valid only at low

(L) doses, we can also use the alternative notation F (PRL)
B,L (D) for F (1)

B (D) :

F (PRL)
B,L (D) = F (1)

B (D) = κ2 D. (5.58)

This yields the corresponding low-dose approximate formula for biological effect
E(PRL)

B (D) :

E(PRL)
B (D) ≈

D→0
E(PRL)

B,L (D) , (5.59)

with,

E(PRL)
B,L (D) = k0 D − F (PRL)

B,L (D)

= κ0 D − κ2 D

= (κ0 − κ2)D = κ1 D, (5.60)

so that,

E(PRL)
B,L (D) = αD, (5.61)

where,

α ≡ κ1 = κ0 − κ2

α = μκ0 = k0

1 + ρp0
≥ 0

⎫
⎬

⎭
. (5.62)

Parameter α from (5.61) is, in fact, the relabeled initial slope si from (5.36) where
si = κ1, so that:

α = si. (5.63)

Therefore, at asymptotically low doses, the cell surviving fraction S(PRL)
F (D)

behaves as:

S(PRL)
F (D) ≈

D→0
S(PRL)

F,H (D), (5.64)

where, biologically, S(PRL)
F,L (D) is the lowest-dose approximation of S(PRL)

F (D),

S(PRL)
F,L (D) = e−αD (Surviving fraction at the lowest doses). (5.65)
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Mathematically, this is also the first-order of the Maclaurin series of S(PRL)
F (D)

and, as such, could equivalently be denoted by S(1)
F (D) :

S(1)
F (D) = S(PRL)

F,L (D) = e−αD . (5.66)

Overall, we see that in the PRL model the dominant mode of inactivation at very low
doses is the exponential cell kill behavior of the response function, as also measured
in the associated experiments. Of course, such an estimate cannot represent the whole
dose-effect curve since the shoulder is missing at intermediate doses and, moreover,
the high-dose exponential tail is absent with the final slope sf which is different from α.
As per derivation (5.60), parameter α in (5.62) is structured. It has two components,
κ0 = k0 and κ2 = λk0 that are the rate constant of potentially lethal and repaired
first-step lesions, respectively. The ratio of these latter two rates can be expressed as
the following alternative quotients:

κ0

κ2
= Rate of potentially lethal lesions

Rate of repaired first − step lesions

= 1 + 1

p0

k1

k2

= 1 + 1

p0

fu

gr
. (5.67)

Here, fu and gr are the fractions of lethal and repaired lesions, whereas k1 and
k2 are the rate constants of cell kill and cell repair, respectively. In (5.67), we used
the defining relation ρ = k2/k1 from (4.10) for parameter ρ, as a measure of the
repair capacity of a pool of intracellular molecules in the role of a repair system. As
discussed, fractions fu and gr can be experimentally determined.

If we insert (5.55) into the rhs of Eq. (5.7), we obtain the result:

S(PRL)
F (D) ≈

D→0
(1 − αρD)1/ρ , (5.68)

which is a binomial expression raised to a non-integer power. However, this binomial
tends to the Poisson law when D → 0, on account of relation limy→0(1−ζ y)−1/(ζ y) =
e−ζ :

(1 − αρD)1/ρ ≈
D→0

e−αD = S(PRL)
F,L (D) = S(1)

F (D) , (5.69)

where S(PRL)
F,L (D) or S(1)

F (D) from (5.65) or (5.66) is the lowest-dose asymptote of

S(PRL)
F,L (D).

5.5 Asymptotic behavior of surviving fraction at the highest doses

At high doses (D → ∞), the Lambert function W0(xD) reduces to zero according to
(5.41) and, in this limit, repair function F (PRL)

B (D) becomes:
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F (PRL)
B (D) ≈

D→∞ F (PRL)
B,H (D) , (5.70)

where,

F (PRL)
B,H (D) = p0. (5.71)

Recall that p0, which is the initial concentration of pool molecules, is also the
natural logarithm of the extrapolation number according to (5.18). The corresponding
estimate of the biological effect E(PRL)

B (D) at high (H) doses reads as:

E(PRL)
B (D) ≈

D→∞ E(PRL)
B,H (D) , (5.72)

where,

E(PRL)
B,H (D) = k0 D − p0. (5.73)

Thus, the surviving fraction S(PRL)
F (D) at high doses acquires the shape:

S(PRL)
F (D) ≈

D→∞S(PRL)
F,H (D) , (5.74)

where,

S(PRL)
F,H (D) ≡ ne−k0 D = ne−D/D0 (Surviving fraction at the highest doses). (5.75)

Here, parameter n is the extrapolation number defined by,

n ≡ ep0 ∴ ln n = p0 (Extrapolation number), (5.76)

as in (5.18). In a semilogarithmic graph of the investigated surviving fraction versus
dose, n represents the intercept of the tangent to S(PRL)

F (D) with the ordinate where
D = 0. With such a plot, this is a geometrical interpretation of n which, therefore, is the
value obtained when the straight line p0 − k0 D for the terminal part of the dose-effect
curve is back-extrapolated to D = 0, according to {p0 − k0 D}D=0 = p0 = ln n.
Multiplication of both sides of relation ln n = p0 from (5.76) by the final D0 dose
gives D0 ln n = p0 D0. Here, D0 ln n can be recognized as the quasi-threshold dose
Dq, so that:

Dq = p0

k0
or Dq = p0 D0. (5.77)

Thus, applying the PRL model to the given experimental data, the quasi-threshold
dose Dq becomes available by reconstructing the initial pool size p0 and the final
slope k0 = 1/D0. We see from (5.74) and (5.75) that the surviving fraction in the
PRL model predicts the exponential inactivation of the cell at the highest doses, as
also measured experimentally.

A similar derivation can also be made by using the alternative formula (5.7) for cell
surviving fraction in the PRL model. To this end, given that xD → 0 when D → ∞,
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we can use the Maclaurin expansion of W0(xD) around xD = 0. In such a case, by
retaining only the first z for z = xD in series (4.36), it follows:

S(PRL)
F (D) ≈

D→∞

(
xD

ρp0

)1/ρ

= ep0−k0 D = ne−D/D0 = S(PRL)
F,H (D) , (5.78)

in accordance with (5.75), as it should be.
Combining (5.16) and (5.75), the surviving fraction S(PRL)

F (D) in the PRL becomes:

S(PRL)
F (D) = S(PRL)

F,H (D)M(D) , (5.79)

where M(D) is from (5.17). Since the correct high-dose behavior of S(PRL)
F (D) is

already secured by S(PRL)
F,H (D) from (5.79), the remainder M(D) should be inconse-

quential at D → ∞. Indeed, by virtue of relation limD→∞ W0(xD) = 0 from (5.41),
it follows:

lim
D→∞ M(D) = 1. (5.80)

However, this does not imply that literally infinite doses are mandatory to ensure that
S(PRL)

F (D) has reached its asymptote S(PRL)
F,H (D). The reason for this is in the fact that

the Lambert function W0(xD) from M(D) in (5.79) has quantity xD as its independent
variable, which itself decays exponentially with increasing dose D according to xD =
ρp0eρ(p0−k0 D) as in (4.68). This makes the contribution from the modifying function
M(D) negligibly small as soon as the irradiation dose reaches the terminal, exponential
part ep0−D/D0 of the dose-effect curve S(PRL)

F (D). This terminal part is, in fact, equal

to S(PRL)
F,H (D) according to (5.75). With the high-dose component S(PRL)

F,H (D) already

factored out in the full function S(PRL)
F (D) from (5.79), the modifying component

M(D) is anticipated to contribute significantly only at low doses and in the intermediate
region around the shoulder. These features of the PRL model match precisely the
biophysical conditions by which repair of radiation damage is important at lower and
intermediate doses, with no appreciable influence on reversing the effect of radiation
at large doses.

5.6 The asymptotes of biological effect at the lowest and highest doses without using
the Lambert function

In Sects. 5.4 and 5.5, the exact expression for biological effect E(PRL)
B (D) from (5.2)

and (5.3) in terms of the Lambert W0(xD) function is used to derive the asymptotic
behaviors E(PRL)

B (D) ≈ αD and E(PRL)
B (D) ≈ D/D0 − p0 at the lowest and highest

doses, respectively. Here, we shall check these findings by two different and more
direct derivations. With this goal, we shall bypass the exact explicit solution from
(5.2) and (5.3) focusing on employing solely the transcendental equation k0 D =
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[B]D + p0(1 − e−ρ[B]D ) from (4.74), which in the PRL model takes the form:

k0 D = E(PRL)
B (D) + p0

{
1 − e−ρE(PRL)

B (D)
}

= E(PRL)
B (D) + p0 − p0

{
1 − ρE(PRL)

B (D) + · · ·
}

, (5.81)

where the Maclaurin series for e−ρE(PRL)
B (D) = e−ρ[B]D is everywhere convergent. At

the lowest doses, concentration of lethal lesions [B]D, or equivalently, the biological
effect E(PRL)

B (D), is small. Therefore, for D → 0 it suffices to retain only the first two
terms in the Maclaurin series from (5.81) to obtain the approximate expression:

k0 D ≈ (1 + ρp0)E
(PRL)
B (D), D → 0. (5.82)

Dividing both sides of (5.82) by 1 + ρp0 and identifying the resulting constant
k0/(1 + ρp0) as α according to (5.62), we have:

E(PRL)
B (D) ≈

D→0
αD , (5.83)

which is the correct lowest-dose asymptote E(PRL)
B,L (D) from (5.59) and (5.61).

On the other hand, at the highest doses, concentration [B]D of lethal lesions is large,
so that e−ρ[B]D tends to zero, or equivalently, p0e−ρ[B]D � [B]D . In such a case, by

neglecting p0e−ρE(PRL)
B (D) relative to E(PRL)

B (D) in (5.81), it follows:

k0 D ≈ E(PRL)
B (D) + p0, D → ∞ , (5.84)

E(PRL)
B (D) ≈

D→∞ k0 D − p0 = k0 D − ln n. (5.85)

As per (5.73), this is the proper highest-dose asymptote E(PRL)
B,H (D) of the exact bio-

logical effect E(PRL)
B (D) in the PRL model.

6 Connections among different radiobiological models

Overall, the initial idea on the pool modeling from 1962 is due to Powers [10] in
terms of a descriptive and qualitative argument. He did not provide any quantitative
data for the cell evolution dynamics nor any equation or expression for a pool-based
cell response to radiation. A quantitative analysis was given in 1972 by Laurie et
al. [12] who, after stating Eqs. (4.1)–(4.4), immediately gave the asymptotic implicit
solution (4.74) at t → ∞ with no details of the derivation. Using the Poisson statistics
according to (5.5), Laurie et al. [12] employed various graphs of the equivalent implicit,
transcendental equation (4.77) for the cell surviving fraction SF(D) to approximately
estimate the parameters {k0, p0, ρ}. Subsequently, they computed dose D from Eq.
(4.77) for a comprehensive set of survival levels [12].
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Such an indirect and rough approach should be contrasted to the present analytical
solution (4.76) of the transcendental equation (4.74) for [B]D, or equivalently, (4.77)
for SF(D) in terms of the single-valued Lambert W0(xD) function. This automatically
gives the single-valued surviving fraction in the PRL model according to (5.5) or
(5.6). A clear benefit is due to the existing important properties of the Lambert W0
function, including the asymptotic behaviors at small and large doses. This permits
an easy extraction of the main three biological quantifying parameters, such as the
extrapolation number, initial and final slopes of the dose-effect curves as done presently
in the PRL model. Moreover, the numerical algorithms for generating the Lambert
W0 function are well established and readily available for fast generation of numerical
tables at any value of the independent variable [36–39]. These algorithms have recently
been supplemented by simple and very accurate analytical expressions for the Lambert
function [40,41]. Such formulae are of great practical importance not only for the PRL
model, but also for the recently suggested “Integrated Michaelis–Menten” (IMM)
model [42]. The lack of an implicit formula for SF(D) from the work of Laurie et al.
[12] was presumably the major reason for the fact that their version of the pool-based
cell survival has not subsequently been used in the literature. Instead, thus far, only two
greatly simplified versions of the repair pool concept were employed in computations
from Refs. [11,13,15]. It is hoped that the advances achieved in the present study will
spur further research using the PRL model in cellular radiobiology.

6.1 Link to the “Linear-Quadratic” model

6.1.1 Repair in the conventional “Linear-Quadratic” model

The biological effect, surviving fraction and full effect in the LQ model are given by:

E(LQ)
B (D) = αu D + βr D2, (6.1)

S(LQ)
F (D) = e−E(LQ)

B (D) =e−αu D−βr D2
or S(LQ)

F (D)=
{

e−αu D
}

lethal

{
e−βr D2

}

repair
,

(6.2)

Fe(LQ)(D) ≡ − 1

D
ln S(LQ)

F (D) = αu + βr D , (6.3)

where subscript “u” and “r” refer to unrepairable (lethal) and repairable lesions, respec-
tively. Specifically in the LQ model, there is also another pair of quantities derived from
(6.1). These are the biologically effective dose BED(LQ)(D) and relative effectiveness
RE(LQ)(D) :

BED(LQ)(D) ≡ E(LQ)
B (D)

αu
= D + ρ0 D2 = D + D2/η0, (6.4)

and,

RE(LQ)(D) ≡ BED(LQ)(D)

D
= 1 + ρ0 D = 1 + D/η0, (6.5)
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where αu ≥ 0 and βr ≥ 0 are the fitting constants and,

ρ0 = βr

αu
, η0 = αu

βr
, η0 = 1

ρ0
. (6.6)

The observables BED(LQ)(D) and RE(LQ)(D) find their most frequent applications
in fractionated radiotherapy, where e.g. ratio βr/αu represents a measure of tissue
sensitivity to the size of dose d given in each treatment. Here, d = D/N where D
is the total dose administered in N fractions. In comparing biological models with
measurements, any departure of experimental data for the Fe-plot from a straight of
the type (6.3) would indicate the breakdown of the LQ model. In fact, such depar-
tures are expected to be the rule rather than the exception from the rule. Indeed, it is
hardly physical that the cell reaction to radiation would never cease to occur no matter
how large the absorbed dose could be. Namely, the Fe-plot (6.3) from the LQ model
shows that reactivity Fe(LQ)(D) increases without limit or bound with augmentation
of dose D. However, quite the contrary is anticipated to occur on biophysical grounds,
suggesting that sufficiently high doses would cause a complete desensitization of the
cell to radiation. In other words, after a certain large threshold dose, any further expo-
sure of the cells to irradiation would provoke no cell reaction whatsoever. In such
a case, the repair system itself would either be exhausted or depleted by radiation,
so that absorption of any subsequent quanta would lead straight to cell death. This
situation corresponds to a kind of a saturation effect, which is observed in the related
measurements and also predicted by the PRL model, as will be discussed in Sect. 7.

The interpretation of the LQ model from formula (6.2) has recently been reviewed
in Ref. [4] where parameter αu ≥ 0 is defined to be the cellular intrinsic radiosensi-
tivity showing how many natural-log-cell-inactivations (killings) occur per gray (Gy)
in an unrepairable manner. In other words, lesions αu D are irrepairable. In the same
formulation (6.2), parameter βr ≥ 0 represents the natural logarithm of the number of
cells (per Gy2) that are repairable. Thus, from the total biological effect αu D + βr D2

in expression (6.1), only portion βr D2 of lesions is viewed as being associated with
repair. As such, ratios βr/αu = ρ0 and αu/βr = 1/ρ0 = η0 are the measures of
the repair capacity and repair incapacity of the cell, respectively. However, when
repair is included, the total number of lesions must be smaller than the unrepaired
portion (αu D ≥ 0) of the whole radiation-induced damage. In other words, repair
must increase the surviving fraction. This is not the case in (6.2) since αu D ≥ 0
and βr D2 ≥ 0 in the surviving fraction e−αu D−βr D2

are repairable and irrepairable
lesions, respectively. Here, the total number of lesions αu D + βr D2 from (6.1) is
larger than αu D. Consequently, the repair-related contribution βr D2 ≥ 0 decreases
the total probability for survival, since {e−αu D−βr D2}with repair ≤ {e−αu D}without repair.
Therefore, conceiving cell repair in the LQ model with αu D and βr D2 taken as non-
repairable and repairable damage [4], respectively, is inconsistent with the meaning
of total number of lesions αu D + βr D2, which is the biological effect (6.1). The
inconsistency is in the plus sign in front of βr D2 for βr ≥ 0. Repair must reduce
portion αu D and this would occur for βr < 0. However, this would be unphysical
since βr is a rate, which must be positive. Moreover, a negative βr would yield diver-
gence of the surviving fraction e−αu D+|βr |D2

at doses D > αu/|βr| located after the
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shoulder of the curve for the cell surviving fraction. This obstacle is eliminated in
Sect. 6.1.2.

The discussed inconsistency is not an issue in the two of the alternative interpreta-
tions of the LQ model without repair having the surviving fraction e−α0 D−β0 D2

with
α0 ≥ 0 and β0 ≥ 0, such as the molecular formalism [1] or the dual action model
[2,3]. For example, according to the concept of dual action, radiation-caused lesions
accumulate. In particular, lesions α0 D and β0 D2 are considered as being produced
by one and two tracks of traversing particles, respectively. Both α0 D and β0 D2 can
be SSBs and DSBs of DNA molecules. The overall cumulative biological effect of
lesions α0 D ≥ 0 and β0 D2 ≥ 0 is manifested in summing the separate positive-
valued contributions from these two cell killing modes, as per α0 D + β0 D2. This,
in turn, decreases the cell surviving fraction because e−α0 D−β0 D2

is smaller than the
contributions from either of the individual probabilities e−α0 D or e−β0 D2

.
The important question which emerges from the outlined discussion is: whether

repair could be consistently introduced in a conceptually modified linear-quadratic
model and still preserve the same mathematical form of the surviving fraction
e−α′ D−β ′ D2

with certain non-negative constants α′ ≥ 0 and β ′ ≥ 0 ? We shall see
in Sect. 6.1.2 that this is indeed possible by using a low-dose second-order approxi-
mation to the Maclaurin series of S(PRL)

F (D) where, however, as opposed to Ref. [4],
both the linear (α′ D) and quadratic (β ′ D2) portions of radiation damage are repairable.

6.1.2 A new way of introducing repair in the “Linear-Quadratic” model via the
second-order perturbation approximation to the “Pool Repair Lambert” model

If in the response F (PRL)
B (D) from (5.3), the Lambert function W0(xD) is developed

around D = 0 as the Maclaurin series and subsequently truncated by neglecting all
the terms Dm (m ≥ 3), the following form is obtained:

W0(xD) ≈
D→0

ρp0 − λρk0 D + ρ

2
λμ2k2

0 D2 , (6.7)

where λ and μ are defined in (5.45) and (5.48), respectively. Relative to (5.55), expres-
sion (6.7) explicitly displays the quadratic term (D2). This yields radiation lesions with
the linear (D) and quadratic (D2) dose dependence both of which are, however, subject
to repair. The resulting approximation of F (PRL)

B (D) denoted by F (2)
B (D) :

F (PRL)
B (D) ≈

D→0
F (2)

B (D) , (6.8)

reads as,

F (2)
B (D) = κ2 D − β ′ D2 , (6.9)

where,

β ′ = p0

2
μ3(ρk0)

2 ≥ 0. (6.10)
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The first term κ2 D is the repair function F (1)
B (D) from (5.57). Further, the associate

biological effect E(2)
B (D) = k0 D − F (2)

B (D) is given by:

E(PRL)
B (D) ≈

D→0
E(2)

B (D) , (6.11)

where,

E(2)
B (D) = k0 D − F (2)

B (D)

= κ0 D −
(
κ2 D − β ′ D2

)

= (κ0 − κ2) D + β ′ D2

≡ α′ D + β ′ D2, (6.12)

so that,

E(2)
B (D) = α′D + β ′ D2, α′ = α. (6.13)

Here, constant α′ is the same parameter α from (5.62) appearing in the first-order
asymptote S(1)

F (D) from (5.65). Therefore, denoting by S(2)
F (D) the second-order in

the Maclaurin series of S(PRL)
F (D) around D = 0, we have:

S(PRL)
F (D) ≈

D→0
S(2)

F (D) , (6.14)

where S(2)
F (D) is the surviving fraction of the same form as in the LQ model (6.2),

but with the parameters α′ and β ′ of different biological meaning,

S(2)
F (D) ≡ e−E(2)

B (D) = e−α′ D−β ′ D2
(α′ ≥ 0 , β ′ ≥ 0). (6.15)

As mentioned in Sect. 5.4, radiosensitivity α, or equivalently, α′ has two com-
ponents that quantify the potentially lethal (κ0 D = k0 D = D/D0) and repaired
(κ2 D = λk0 D) lesions. This is opposed to the LQ model [4] from (6.2) where lesions
proportional to dose (αu D) are irrepairable such that only the radiation damage βr D2

can be repaired. By reference to (6.15), the characteristic α′/β ′ ratio is given by:

α′

β ′ = ξ D0, ξ = 2

p0

(

p0 + k1

k2

)2

. (6.16)

The string of four successive equations in (6.12) for E(2)
B (D) details the answer to

the question posed at the end of subsection (5.1). Therein, we inquired about the pos-
sibility of including repair in the linear-quadratic representation without encountering
the inconsistency from Ref. [4] with a decreased cell survival. First, the biological
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effect E(2)
B (D) from the repair-based linear-quadratic model via the second-order per-

turbation approximation to the PRL model is given by:

E(2)
B (D) = k0 D − F (2)

B (D) , (6.17)

where k0 D is a potentially repairable lesion and F (2)
B (D) is the repair function. Then,

repair is seen as being applicable to lesions proportional to D and D2 according to:

F (2)
B (D) = κ2 D − βD2. (6.18)

Subsequently, when this latter twofold contribution from repair is subtracted from
k0 D, the total number of lesions is obtained through:

E(2)
B (D)= κ0 D

︸︷︷︸
initial lesions

− (κ2 D − β ′ D2)
︸ ︷︷ ︸

repaired lesions

(Consistent repair in linear−quadratics).

(6.19)

Here, to recall, κ0 D = k0 D = a0 where a0 is the initial concentration of potentially
lethal lesions ′′a′′. Finally, (6.19) gives:

E(2)
B (D) = (κ0 − κ2)D + β ′ D2 ≡ α′ D + β ′ D2 , (6.20)

with α′ = κ0−κ2 = α where α is in (5.62). This shows that it is possible to consistently
include repair in the LQ-type modeling if both lesions proportional to dose and dose
squared are repairable. Only the latter portion is repairable in (6.2) from Ref. [4]. In the
linear-quadratic description (6.15), the survival probability e−k0 D based on potentially
lethal lesions k0 D is increased by repair. The net result is a larger total probability
e−k0 Dek2 D−β ′ D2 = e−α′ D−β ′ D2

, as per the discussed sequence of four equations in
(6.12), or equivalently, (6.17)–(6.20) for E(2)

B (D).
In (6.16), quantity k1/k2 is the quotient of the rate constants for cell kill and cell

repair mechanisms. Thus, because a portion of the linear inactivation α′ D can be
repaired via its component κ2 D, quantity α′/β ′ is not simply in a direct proportion
with the cell kill and cell repair ratio k1/k2. Rather, α′/β ′ is more involved since it is
non-linearly dependent on k1/k2 by being proportional to p2

0 +2p0k1/k2 + (k1/k2)
2,

as per (6.16). Of course, despite the relations between the sets {α′, β ′} and {k0, p0, ρ},
cell surviving fraction (6.15) could still retain the simplicity of the customary LQ
model by extracting only two parameters α′ and β ′ from the experimental data. How-
ever, the resulting α′/β ′ ratio cannot be interpreted as the quotient of the cell kill to cell
repair. This is due to describing the lesions proportional to dose (∼ D) as repairable.
Nevertheless, both the surviving fraction (6.2) and (6.15) suffer from continuous bend-
ing with augmentation of dose. This is not the case with the full PRL model (5.6) which
can yield the most accurate numerical values for k1/k2. By contrast, any fitting of the
truncated power series representation (5.6) from the PRL model, such as (6.15), to
the given measured data would inevitably force the true k1/k2 ratio to acquire some
altered and possibly unrealistic values as a direct consequence of minimization of the
usual squared difference (Model − Experiment)2.
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6.2 Link to the “Padé Linear-Quadratic” model

The LQ model is known to be inadequate at large doses because of the continued
bending of the cell surviving fraction S(LQ)

F (D) with increased D. This failure is due

to the Gaussian e−βr D2
, which dominates at large doses where for mammalian cells

the purely exponential inactivation e−D/D0 occurs, as confirmed by many measure-
ments. This drawback has recently been overcome in a new repair-based mechanistic
formalism called the Padé linear quadratic (PLQ) model [43–48]. The PLQ model
consists of using a cell repair pathway for reducing the potentially lethal damage k0 D
by subtracting the repaired lesions produced by a given repair system. In this model,
the concentration of repaired lesions is obtained as the effective value, or equivalently,
the halved harmonic mean of the low- and high-dose asymptotes of a repair function
which has the correct behaviors at D → 0 and D → ∞. The PRL model has the
repair function F (PRL)

B (D) with two such proper asymptotes at small and large doses.
Therefore, the PLQ model can be deduced directly from such two asymptotic behav-
iors of F (PRL)

B (D). To this end, we first write the biological effect E(PLQ)
B (D) in the

PLQ model via the correct form of the type (5.2):

E(PLQ)
B (D) = k0 D − F (PLQ)

B (D). (6.21)

Here, F (PLQ)
B (D) is the repair function defined as the halved harmonic (or the effec-

tive value) of the respective low- and high-dose asymptotes F (PRL)
B,L (D) and F (PRL)

B,H (D)

of F (PRL)
B (D) from (5.58) and (5.71), respectively:

F (PLQ)
B (D) = F (PRL)

B,eff (D) ≡ F (PRL)
B,L (D)F (PRL)

B,H (D)

F (PRL)
B,L (D) + F (PRL)

B,H (D)
, (6.22)

with,

F (PRL)
B,L (D) = κ2 D, F (PRL)

B,H (D) = p0 , (6.23)

where p0 is the initial concentration of repair pool molecules and κ2 is from (5.45).
The resulting repair function in the PLQ model is:

F (PLQ)
B (D) = κ2 p0 D

p0 + κ2 D
. (6.24)

In this expression, component 1/(p0 + κ2 D) represents a hyperbola when graphed
versus dose D. It behaves like constant 1/p0 at D → 0 and it tends to zero for
D → ∞. When such a pure hyperbola is multiplied by κ2 p0 D, as in the rhs of
Eq. (6.24), the so-called rectangular hyperbola κ2 p0 D/(p0 + κ2 D) is obtained with a
diametrically opposite pattern relative to 1/(p0+κ2 D). Namely, rectangular hyperbola
κ2 p0 D/(p0 + κ2 D) tends to zero for D → 0 as a linear term κ2 D and it levels off by
attaining its plateau value p0 at D → ∞. This rectangular hyperbola is recognized
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as the diagonal Padé approximant (PA) [49] given by the quotient of two first-degree
polynomials κ2 p0 D (numerator) and p0 +κ2 D (denominator). Here, the denominator
(p0 + κ2 D) has its free constant non-zero term (p0 �= 0). By contrast, the numerator
(κ2 p0 D) does not have a free non-zero constant term since it begins with a linear dose
(∼ D). In the general PA, the denominator polynomial is usually represented with a
free constant equal to 1. This is achieved in (6.24) by factoring out constant p0 �= 0
from both the numerator and denominator and canceling it to write:

F (PLQ)
B (D) = p0γ D

1 + γ D
, (6.25)

where,

γ ≡ κ2

p0
. (6.26)

Using relation κ2 = λk0 from (5.45) as well as parameter α from (5.62), we can
cast (6.26) into the following form:

γ = αρ. (6.27)

Expression γ ≡ κ2/p0 from (6.26) represents the defining relation for constant
γ, whereas its equivalent counterpart γ = αρ from (6.27) is a derived equation. The
important point to retain is that constant κ2 is related to cell repair and, therefore, so
is γ by way of relation γ = κ2/p0 from (6.26).

Repair function (6.24) or (6.25) is of the form of the rectangular hyperbola encoun-
tered in the Michaelis–Menten [50] enzyme catalysis. In the present context, enzyme
molecules and lesions interact to create an intermediate and unstable chemical com-
pound, which after dissociation produces unaltered free enzymes and repaired lesions
[46,47]. Thus, the Michaelis–Menten mechanism could be an alternative interpre-
tation of the PLQ model with the pool of generic repair molecules being specified
as enzyme molecules from the environment of radiation-damaged cell. In such a
case, radiation-induced damage k0 D is diminished by a factor p0γ D/(1 + γ D)

due to the activated pool of repair enzyme molecules to yield the biological effect
E(PLQ)

B (D) = k0 D − p0γ D/(1+γ D). Technically, reduction p0γ D/(1+γ D) is the
dose-dependent repair rate or velocity of the type of the initial velocity v0 from the
Michaelis–Menten enzyme catalysis [50–52] and a further elaboration of this aspect
of the PLQ model can be found in Refs. [46,47]. Repair velocity v0 is a differential
quantity in the sense of being defined by the first derivative with respect to time of the
non-stationary concentration of substrate (lesion) [S](t) ≡ [S] via v0 = d[S]/dt . It is
for this reason that the PLQ model is alternatively called the differential Michaelis–
Menten (DMM) model [47]. Note that there is also the integrated Michaelis–Menten
(IMM) model [42] which predicts the biological effect in terms of the Lambert W0(X)

with X ≥ 0.
Importantly, the Michaelis–Menten enzyme velocity v0 can also be directly derived

as the halved harmonic mean of the velocities for creation and destruction of the
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intermediate complex without having to introduce any kinetic rate equation [42].
Rate equations (4.1)–(4.4) of the pool methodology are different from those of the
Michaelis–Menten mechanism for enzyme catalysis in the quasi-steady state formal-
ism of Briggs and Haldane [51]. This difference is most notably seen in the fact that
unlike Refs. [50,51], the chemical reaction which obeys the system of rate equations
(4.1)–(4.4) does not assume creation of an intermediate complex comprised of a pool
molecule and a lesion. Yet the same type of the repair velocity is obtained as the cor-
responding typical expression for v0 from the Briggs–Haldane [51] derivation of the
Michaelis–Menten [50] formula. This occurrence is expected from the fact that we did
not derive the PLQ model as e.g. a further approximation of the PRL model. Rather,
we simply defined the PLQ model as the halved harmonic mean of the low- and high-
dose asymptote of the biological effect from the PRL model. Therefore, it comes as no
surprise that the repair function in the PLQ model coincides with the repair velocity
v0 given by the mentioned halved harmonic mean of the Michaelis–Menten enzyme
rate [50] in the derivation from Ref. [42].

The corresponding biological effect E(PLQ)
B (D) in the PLQ model follows from

(6.21) as:

E(PLQ)
B (D) = αD + βD2

1 + γ D
, (6.28)

with,

α = μk0, β = γ k0, γ = αρ , (6.29)

where ρ from (4.10) is the repair capacity and μ is in (5.48). Parameters α and γ

are the same as in (5.62) and (6.27), respectively, and they are repeated in (6.29) for
completeness. The corresponding Poissonian surviving fraction reads as:

S(PLQ)
F (D) ≡ e−E(PLQ)

B (D) = e− αD+βD2

1+γ D . (6.30)

We see that the PLQ model can be introduced either in terms of parameters {k0, p0, ρ}
from the PRL model or via the alternative set {α, β, γ } in (6.29). The defining relation
of the extrapolation number n in the PLQ model [46,47] read as:

ln n = β − αγ

γ 2 . (6.31)

Inserting α, β and γ from (6.29) into (6.31), we can deduce the expression:

ln n = p0, (6.32)

which is in agreement with the related formula (5.18) from the PRL model. The α/β

ratio can now be extracted from (6.29) as:

α

β
= ηD0 or

α

β
= k1

k2
D0 , (6.33)
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where η = k1/k2 = 1/ρ from (4.11) is the repair incapacity and D0 or D37 is the
reciprocal of the final slope k0 of the dose-effect curve. Thus, unlike α′/β ′ from (6.16),
expression (6.33) for the α/β ratio is directly proportional to the quotient of the cell
kill to cell repair with the final D0 dose as the proportionality constant. This is a
much more transparent formula than its more involved counterpart from (6.16) in the
repair-based LQ model. Further, the β/γ ratio can also be extracted from (6.29) to be:

β

γ
= k0 = 1

D0
= sf , (6.34)

where sf is the final slope of the PRL model from (5.42). Moreover, using (5.48), it
follows that all the three parameters α, β and γ of the PLQ model are embedded in
the single constant μ :

αγ

β
= μ. (6.35)

Further, the initial slope of the PLQ model is calculated from (6.30) with the result
α. This yields α = si where si is the initial slope (5.36) in the PRL model. By using
(6.29), we can cast the biological effect (6.28) into the form:

E(PLQ)
B (D) = L(1 + ρL)

ρp0 + (1 + ρL)
, L = k0 D. (6.36)

If the pool molecules were absent from the onset (p0 = 0), all the potentially
lethal lesions would be directly transformed to lethal radiation damage. In such a case
E(PLQ)

B (D) from (6.36) would be equal to the biological effect E(ST−SH)
B (D) in the

ST-SH model from (5.4):
{

E(PLQ)
B (D)

}

p0=0
= E(ST−SH)

B (D) = L = k0 D. (6.37)

Overall, the PLQ model solves the high-dose problem of the LQ model. In particular,
the PLQ model predicts the correct exponential inactivations at both small and large
doses with the asymptotes that coincide with their respective counterparts (5.65) and
(5.75) from the PRL model:

S(PLQ)
F (D) ≈

D→0
e−si D = e−αD , (6.38)

and,

S(PLQ)
F (D) ≈

D→∞ e−sf D = ne−D/D0 . (6.39)

In between these two asymptotes, at intermediate doses, the PLQ model predicts
shoulders in dose-effect curves as a direct consequence of inclusion of repair. Overall,
the PRL and PLQ model share the identical extrapolation number, initial slope, final
slope as well as the lowest- and highest-dose asymptotes of the cell surviving fractions.
Such an outcome is, in fact, automatically prescribed by the construct (6.22). Note that,
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in general, the halved harmonic mean, such as the one in the defining effective repair
function (6.22) from the PLQ model, is known to be the truest average value (mean)
for processes and phenomena whose development is characterized by kinetic rate
equations. This fact together with the biological backing of parameters {α, β, γ }, or
equivalently, {k0, p0, ρ} explains the systematic success of the PLQ model in detailed
comparisons with experimental data [43–48].

6.3 Link to the “Hug–Kellerer–Haynes” saturable repair model

The PRL model can be connected with some other repair-based radiobiological models
by further exploiting the known asymptotes of the Lambert function W0(xD) from the
biological effect E(PRL)

B (D) in (5.2). To this end, we first note that the implicit definition
of this biological effect is given by the transcendental equation deduced from (5.2)
and (4.74):

k0 D = E(PRL)
B (D) + p0

{
1 − e−ρE(PRL)

B (D)
}

. (6.40)

The second part p0{1 − e−ρE(PRL)
B (D)} of this expression has a form of a saturable

repair function where in the exponential e−ρE(PRL)
B (D) one can make a linear approxi-

mation αD in E(PRL)
B (D) via E(PRL)

B (D) ≈ αD to have:

e−ρE(PRL)
B (D) ≈ e−αρD . (6.41)

With this approximation and by using relation γ = αρ from (6.27), the saturable
repair function from (6.40) becomes:

p0

{
1 − e−ρE(PRL)

B (D)
}

≈ p0

(
1 − e−γ D

)
. (6.42)

Thus, if approximation (6.41) is used in the rhs of Eq. (6.40), its lhs would acquire
the form:

E(PRL)
B (D) ≈ k0 D − p0

(
1 − e−γ D

)
. (6.43)

On the other hand, the biological effect E(HKH)
B (D) in the Hug-Kellerer-Haynes

(HKH) model [53–56] is given by:

E(HKH)
B (D) = k0 D − α̃

(
1 − e−β̃ D

)
, (6.44)

where α̃ ≥ 0 and β̃ ≥ 0 are freely adjustable constants. Therefore, by reference to
(6.43), it follows:

E(PRL)
B (D) ≈ E(HKH)

B (D) , (6.45)
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provided that,

α̃ = p0, β̃ = γ. (6.46)

Formula (6.44) together with the assumption of the Poisson distribution of lesions
gives the surviving fraction S(HKH)

F (D) in the pool-repair-based HKH model:

S(HKH)
F (D) = e−E(HKH)

B (D) = e−k0 D+p0
(
1−e−γ D

)

. (6.47)

In the context of population studies of species, including humans, the type of sat-
uration function from (6.47) has first been proposed by Gompertz [57]. Employing
the same procedure as in Sect. 5.6, it follows that the low- and high-dose asymptotes
of E(HKH)

B (D) from (6.44) and (6.46) coincide with the corresponding asymptotic
behaviors of the biological effect from the PRL and PLQ models:

S(HKH)
F (D) ≈

D→0
e−αD , (6.48)

where α stems from k0 − α̃β̃ = k0 − p0γ = k0 − p0αρ = k0 − p0μk0ρ = k0(1 −
μρp0) = k0μ = α,

S(HKH)
F (D) ≈

D→∞ ne−D/D0 , n = ep0 . (6.49)

An alternative approximation of the same equation (6.40) can be generated by
substituting the high-dose asymptote E(PRL)

B,H from (5.73) into the exponential with the
result:

E(PRL)
B (D) ≈ k0 D − p0

{
1 − eρ(p0−k0 D)

}
. (6.50)

If the dose-effect curve reached its terminal part, only the cell kill mechanism (k0 D)

would be active. In such a case, term p0{1 − eρ(p0−k0 D)} from (6.50) will be nearly
zero,

p0

{
1 − eρ(p0−k0 D)

}
≈ 0 (At the terminal part of dose − effect curve). (6.51)

The solution of this equation is given by:

D ≈ p0

k0
= Dq , (6.52)

where, by way of (5.77), quotient p0/k0 is identified as the quasi-threshold dose Dq.
Both approximations (6.43) and (6.50) use only the iterates of the transcendental

equation (6.40) without any reference the exact explicit solution for E(PRL)
B from (5.2)

in terms of the Lambert function W0(xD). Moreover, in estimates (6.43) and (6.50),
the dose-dependent part of the initialization of iterations is the high-dose inactivation
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(k0 D). Therefore, we could also carry out an alternative analysis by starting from the
exact expression for E(PRL)

B in (5.2) and therein develop W0(xD) in the Maclaurin series
around D = ∞ which corresponds to xD = 0. Thus, according to (4.36), we have:

W0(xD) =
∞∑

m=1

(−m)m−1

m! xm
0 emρ(p0−k0 D) , (6.53)

where x0 = ρp0, as per (4.69). The convergence circle of this series is given by
xD = ρp0eρ(p0−k0 D) ≤ 1/e, which can be expressed in terms of dose as:

D ≥ DT, DT = 1 + ρp0 + ln (ρp0)

ρk0
. (6.54)

At large doses, by keeping only the first term z for z = xD in series (6.53), it
follows:

W0(xD)

ρ
≈

D→∞ p0eρ(p0−k0 D) , (6.55)

which upon insertion in the exact formula (5.73) for E(PRL)
B gives the approximation:

E(PRL)
B ≈

D→∞ k0 D − p0

{
1 − eρ(p0−k0 D)

}
, (6.56)

in agreement with (6.50). Overall, this simplified consideration with account of high-
dose asymptotes alone suffices to see that the PRL model adequately describes the
biological course of the radiation event in the mechanism-switching region charac-
terized by the condition D ≈ DT. When dose D becomes equal to transition dose
DT, repair becomes ineffective and the surviving fraction is dominated by the linear
response k0 D, which signifies the onset of the terminal, exponential portion of the
dose-effect curve. The transition dose DT is the signature of a switch of the kinetics
from the second-order (cell repair) to the first-order (cell kill) for description of inter-
action between pool molecules and lesions through the underlying chemical reaction.
Such a switch corresponds to the passage from the shouldered part to the straight-line
portion of the dose-effect curve in the semilogarithmic plot of cell surviving fraction
S(PRL)

F (D) as a function of dose D.
This examination shows that the transition dose DT is born out naturally in the PRL

model with the numerical value determined automatically by the already reconstructed
parameters p0, k0 and ρ as per (6.54). In contrast to this, in the linear-quadratic-linear
(LQL) [58–60] and the universal survival curve (USC) [61] models, DT is introduced
ad hoc as an independent fitting parameter to remove the Gaussian tail by hand from
the LQ model at D > DT in an attempt to force the exponential inactivation at high
doses [43,44,46–48,62–71].

Although the transition dose is not explicitly needed in the PRL model, DT can be
reconstructed using three biological parameters p0, k0 and ρ. No condition is imposed
within the PRL model to split apart the shouldered from the straight-line parts of
the dose-effect curve. Instead, the properly-formulated kinetic rate equations in the
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PRL model yield the unique solution whose power series expansion at large doses
automatically gives the transition dose DT as the convergence radius of this Maclaurin
expansion.

7 Results and discussion

7.1 Measurable parameters of the “Pool Repair Lambert” model

In the PRL model, there is an explicit connection of parameters {ρ, p0, D0} with the
dynamics of evolution of lesion concentrations. For example, ρ is a quotient of the rate
constants for cell repair (k2) and cell kill (k1) from (4.10), or equivalently, a ratio of
experimentally measurable fractions of repaired (gr) lesions and unrepaired i.e. lethal
lesions ( fu) from (4.12). Biologically, constant ρ is the repair capacity of the pool of
intracellular molecules. The other two quantities D0 and p0 from the triple {ρ, p0, D0}
in the PRL model can be graphically read off by way of the tangent to the terminal
(exponential) part of the experimentally measured dose-effect curve S(exp)

F (D) versus
D. Therein, the reciprocal 1/D0 of the “final D0 dose” is the final slope k0 of the said
tangent and n = ep0 is the extrapolation number as the intercept of the same tangent
with the ordinate S(exp)

F (D) at dose D = 0 of the abscissa.
Thus, even by a trivial (and, in fact, by hand) extraction of k0 and n without any

fitting, one could reconstruct the two important parameters of primary biological and
clinical meaning and interpretation i.e. the final D0 dose and the initial concentration
p0 of pool molecules available for repair. The substitution of such retrieved quantities
{p0, k0} into expression (5.6) for S(PRL)

F (D) would leave us with a single unknown
parameter ρ in the PRL model. Finally, this latter constant could be either deduced via
relation ρ = gr/ fu by using the measured fractions of the lethal and repaired lesions
fu and gr or reconstructed from S(exp)

F (D) by minimization of the squared difference

{S(PRL)
F (D) − S(exp)

F (D)}2.

7.2 Comparisons of radiobiological models with measurements

Comparisons between the PRL and LQ models are presently performed relative to the
experimental data for cell response to irradiation. Thus, Fig. 1 displays the dose-effect
curves or cell surviving fractions, SF, computed in these two models and measured
experimentally. Figure 2 shows the full effect plot or the Fe plot, which is also called the
reactivity or relative radiosensitivity plot and is given by the product of the reciprocal
dose and the negative logarithmic surviving fraction, −(1/D) ln SF.

These figures show that the PRL model is in excellent agreement with the measure-
ments throughout the considered dose range from low through intermediate to high
radiation exposures. By contrast, it is clear from Figs. 1 and 2 that the LQ model is of
limited usefulness, as it breaks down at high doses. As mentioned, in an Fe-plot, any
departure of experimental data from a straight line indicates a failure of the LQ model.
This is evident from Fig. 2 where the LQ model predicts the straight line αu + βr D
which is not confirmed by the corresponding measurement. Here, the experimental
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data are well described by the curved line of the PRL model. The numerical difference
between the PRL and LQ model is substantial.
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[17,72]: the mean clonogenic surviving fractions SF(D) for Chinese hamster V79 cells irradiated by 50
kVp X-rays. Theories: full line: PRL (pool repair Lambert) model and dashed line: LQ (linear quadratic)
model
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The straight line αu + βr D of the LQ model from Fig. 2 shows that the underlying
observable, which is relative radiosensitivity, rises indefinitely with no limit as the
administered dose D is increased. This is an utterly unphysical description which is
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at variance with measurements that, however, exhibit a saturation effect at sufficiently
high doses. As such, a realistic Fe-plot from an experiment usually has the form of a
rectangular hyperbola, as also predicted by the PRL model in Fig. 2, rather than the
straight line of the LQ model. The rectangular hyperbola from the PRL model implies
that repair of radiation damage to the cell through pool molecules is equivalent to the
Michaelis–Menten [50] chemical reaction of enzyme-lesion catalysis.

8 Conclusions

Notwithstanding the great importance of advances by physics and technology in radio-
therapy, significant improvements must also rely upon the relevant aspects of biological
effects of interactions between living cells and radiation. For example, within frac-
tionated radiotherapy, which is overwhelmingly used in clinical practice, the most
prominent biological aspect in the response of the cell to irradiation is repair of poten-
tially lethal damage. The existence of repair or recovery mechanisms is evidenced by
the appearance of a shoulder in a typical dose-effect curve and by the reduced radiation
effectiveness with reduced dose rates. The present study has the primary focus on elu-
cidating a special repair mechanism from the standpoint of chemical kinetics and the
underling time evolution of radiation lesions. Within this topic, one of our major goals
is to use the concept of cell repair to systematically develop the theoretically well-
founded formalisms capable of providing quantitative explanation and interpretation
of cell surviving curves and relative radiosensitivities that are among the principal
signatures of dose-effect relations. The presently expounded novel strategy and the
obtained results can further be exploited in radiotherapy e.g. for finding the optimal
doses to be given to patients during various fractionation regimens with a particular
advantage for high-dose per fraction schedules consisting of only fewer deliveries, as
in stereotactic radiotherapy.

With these goals, the mechanistic “Pool Repair Lambert” model, or PRL, is intro-
duced in this work to describe survival of irradiated cells. It is derived from the second-
order chemical kinetics for a quantitative description of interaction between radiation
and lesions. Here, the term “second-order” implies that the product of two concentra-
tions is present in the rate equations. Because of the appearance of such products, the
ensuing evolution of concentrations of lesions (radiation-damaged DNA substrates)
and repair pool molecules is nonlinear. We use the mass action law to set up the corre-
sponding systems of coupled nonlinear differential rate equations. The direct cell kill
mechanism by single radiation events is automatically included. We proceed in two
parallel steps: (1) by implementing the concept of a pool of intracellular molecules for
repair of potentially lethal lesions and (2) by simultaneously accounting for a com-
petitive mechanism, which is transformation of potentially lethal radiation damage to
lethal lesions.

The PRL model expresses the cell surviving fractions in a compact analytical form
by means of the readily calculable transcendental Lambert W0 function whose inde-
pendent variable contains the physically absorbed dose D. The applicability domain
of the PRL model extends over the entire dose range, from low through intermediate
to high dose exposures. The ensuing cell surviving fractions in this model exhibit the
exponential cell kill modes at both low and high doses with a repair-based shoulder
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located in-between the latter two extreme intervals. Such characteristic patterns in
these three dose-subregions are smoothly ingrained in the Lambert W0 function and
they are made apparent in the course of deriving the constant non-zero initial and final
slopes of the dose-effect curves. The universal validity of the PRL model across the
entire dose spectrum is rooted in the dynamics of the starting rate equations and their
explicit solutions via the Lambert W0 function. Moreover, at very small doses, the
PRL model predicts the exponential cell kill mechanism.

At very high doses, the PRL model formally possess the asymptotic behavior of
the multi-target and single-hit model, or MT-SH, by predicting the surviving fraction
ne−D/D0 as D → ∞, where n is the extrapolation number and D0 is the inverse of the
final slope k0. This similarity of the two models at asymptotically large doses D should
not be taken too literally as the equivalence of these formalisms. Rather it should be
viewed merely as a descriptive resemblance of the two very different approaches with
unequal biological meaning of the parameters. Thus, the terminal, exponential parts
of the dose-effect curve in both the PRL and MT-SH models are characterized by the
final D0 dose as the dose increment for which survival decreases by 37 %. However,
the customary biological interpretation of D0, as the mean lethal dose, is pertinent
to the hit-target description, but not to the PRL model. This difference comes from
the fact that radiation lesions proportional to dose D are repairable and irrepairable
(lethal) in the PRL and hit-target model, respectively. Moreover, in the PRL model,
the extrapolation number is related to the size of the pool of repair molecules prior
to irradiation (ln n = p0). On the other hand, in the MT-SH model, the extrapolation
number n is interpreted as the number of sensitive sites (targets) in the cell that all need
to be inactivated to cause cell death. Very large extrapolation numbers (occasionally
of the order of 1000 or larger) have been reported in the literature with cells grown in
culture [73]. However, it is unlikely that thousands of sites need to be hit to inactivate
a cell [74]. As such, the original meaning of the extrapolation number conceived as
the number of targets is widely considered as unrealistic.

All these circumstances point to the essential advantage of expressing the solutions
of the invoked rate equations by analytical functions of the known asymptotic behav-
iors. Such is the Lambert function W0, which secures the experimentally observed
shoulders in dose-effect curves, as well as the modality of exponential cell inacti-
vations in the limit of very small and very large doses. This bypasses altogether the
long-practiced empirical and phenomenological patching of the low-dose LQ model to
the high-dose exponential tail of cell surviving fractions in the LQL and USC models
[58–61]. Comparisons of the PRL model with experimentally measured cell surviving
fractions show excellent agreement at all the investigated doses. In particular, strik-
ingly improved is the PRL-based full-effect or the Fe plot, which shows a typical
concave curvature, as also confirmed by measurements, in contrast to straight lines
given by the LQ model.

The most significant practical usefulness of the PRL model is in the potential of
providing the radiation oncologist with a realistic strategy for designing more effective
fractionation schedules, especially in dose planning systems for fast and worldwide
expanding hypofractionated radiotherapy, which is also known as stereotactic radio-
surgery [75–77], where the LQ model fails to conform with measurements of cell
responses to high-dose irradiations.
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41. Dž. Belkić, Theory and practice with the transcendental Lambert W function in interdisciplinary
research: introduction of a highly accurate single analytical formula. J. Math. Chem. (submitted)
(2014)
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