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Abstract Biophysical models for repair mechanisms for cell surviving fractions
SF(D) after exposure to radiation are studied. The principal focus is on a novel theory,
the Padé-linear quadratic (PLQ), or equivalently, the differential Michaelis–Menten
radiobiological model, which predicts SF(D) as a function of the absorbed dose D in
the form SF(D) = exp {−(αD + βD2)/(1 + γ D)}, with a clear biological and clini-
cal meaning of the three parameters α, β and γ . It is shown that this functional form
in the PLQ model emerges directly from the simultaneous fulfillment of the require-
ments for the correct asymptotic behaviors of the repair function at low and high doses.
Moreover, this automatically secures the purely exponential cell kill modes at both
small and large D, as also encountered in the corresponding experimental data for cell
surviving fractions. Further, it is demonstrated that the PLQ-based repair function,
given by a rectangular hyperbola, coincides with the reaction velocity for enzyme
catalysis from the Michaelis–Menten mechanism. This repair velocity is the halved
harmonic mean of the low- and high-dose asymptotes of the catalytic repair func-
tion. Such circumstances constitute a firm mechanistic basis of the PLQ model, which
is shown to exhibit excellent agreement with measurements. Robust applications of
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the PLQ model are anticipated, especially in hypofractionted radiotherapy, such as
stereotactic radiosurgery.

Keywords Chemical kinetics · Enzyme catalysis · Michaelis–Menten model ·
Radiobiological models · Padé approximant · Hypofractionated radiotherapy

1 Introduction

1.1 Two principal goals of radiotherapy

The ultimate goal of radiotherapy is to improve both quality of life and survival of
patients. However, the notion of cure might have different meanings for different
patients. For some patients good quality of life with a co-existent tumor is a viable
option. However, for others longevity is the priority, even if it is accompanied with
poor quality of life. Moreover, not only private, but also professional quality of life
is crucial for those patients who are struck with cancer at an age when they could
still be productive at work. Returning to work during and after cancer radiotherapy
is often a challenge for the patient and for work conditions. The latter conditions
need judicious adjustment to avoid overprotection, and yet allow resumption of a
certain degree of former professional tasks. This could enhance the patient’s continued
fighting chance and provide comfort of being a part of the society’s work force. Both
quality of life and survival might not be in reach for every patient by any of the
existing treatment modalities even with never ceasing advances in technology. For this
reason it would be optimal if, regarding these two human sides of the radiotherapeutic
goals, patient choice could also be an element of the decision making in selecting
the treatment strategy, which could best suit each individual case. This would be
a component of utmost importance within the realm of biologically-optimized and,
indeed, personalized radiotherapy.

The choice between the mentioned two alternatives is never easy and clear cut,
as it depends upon many uncertainties. And this is where therapeutic research in
oncology comes in to tap as deeply as possible into the unknowns in an attempt to
reduce these uncertainties and improve predictability about tumor commencement,
growth, metastasis and the overall chance for cure. Hand-in-hand with such efforts
go research and practice in cancer diagnostics, as early tumor detection very often
increases the overall probability of successful treatment and eventually of cure. By
the exceedingly complex nature of cancer, research in this field must, by necessity,
be comprehensive and interdisciplinary encompassing medicine, biology, chemistry,
physics and mathematics.

The present study is precisely in this crossroad of five different disciplines, as we
shall deal with theoretical descriptions of cell and tissue survival after irradiation.
Our main approach to this complicated problem is through a focus on cell repair
mechanisms. Radiobiological models for cell surviving fractions are of paramount
importance as one of the main inputs to dose planning systems for treatment of patients
with cancer. The ultimate success of radiotherapy rests upon the possibility to properly
understand cell repair after irradiation. For this reason, the main emphasis of the present
study will be placed on mechanistic repair-based radiobiological models.
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1.2 The concept of dose

A single dose D is often viewed as the energy absorbed per unit volume per unit mass
of that volume. However, such a definition is insufficiently precise, since it is not this
dose D which is actually deposited to the tissue. Within the said colloquial definition,
it would be legitimate to pose an otherwise wrong question, e.g: “what should be the
dose D delivered to the lung?” Instead, a more precise concept should be used, as
found within e.g. the corresponding microdosimetric considerations. There, a single
absorbed dose D is defined as the expected value of the so-called specific energy z.
Specific energy z is the energy per unit mass per unit volume deposited per event per
cell nucleus. This highlights the local nature of a single absorbed dose D, which is,
thus, deposited at a given spatial point r in tissue. Therefore, with this microdosimetric
definition of dose, the above question is untenable, as it refers to the dose D absorbed
by a whole organ. Instead, the right question is: “what should be the dose D delivered to
a given point r in a spatial domain within the lung?” The reason for strictly adhering to
this correct microdosimetric dose concept is of fundamental importance, since resort-
ing to mathematical modeling of cell survival upon irradiation and, most importantly, to
radiotherapy in clinical practice would be severely hampered if an equivocal definition
of a single absorbed dose D is used from the outset. The main justification for adhering
to the microdosimetric definition of a dose D is in capturing a key physical mechanism
for energy deposition during the passage of monoenergetic beam particles through tis-
sue. By this mechanism, a single dose D refers to the energy deposited in a single event
(hit), which is conceived as a collisional interaction (ionization, excitation, electron
capture,...) between a target (e.g. a sensitive site of a cell) and the traversing particles
(primary, secondary,...). These radiation events are intrinsically local, i.e. limited to a
given atom or molecule. Hence, a single absorbed dose D for a single event is a point-
like structure which, as such, cannot be viewed as being spread out to cover a whole
organ. In reality, beams are not monoenergetic, but nevertheless the meaning of a single
absorbed dose D is fully preserved for energy spreading in the beam, since the men-
tioned interactions between a projectile and a target still constitute a single radiation
event.

The above endorsement of microdosimetry on the level of the definition of a single
absorbed dose D does not imply sharing the often held view that radiation damage
to biological molecules can be fully understood and described by relying exclusively
upon the spatial distributions of energy depositions in tissue. Quite the contrary, noth-
ing is further from the truth than such a reductionist view, since the response of
biomolecules from tissue to irradiation is strikingly multifaceted, as it widely ranges
from physical through biochemical to physiological aspects of complex radiation-cell
interactions. In this chain, physical deposition of the particle energy is only the ini-
tial stage. To properly cover the next step, this aspect of a beginning of the physical
damage during irradiation must subsequently be connected with e.g. the associated
biological damage to the cell. Most severe lesions to the cell are double strand breaks
(DSB) of deoxyribonucleic acid (DNA), which is considered as the principal target
molecule in assessments of the radiation damaged tissue. The appearance of DSBs is
one type of severe biological damage caused by energy deposition through a physical
hit of a beam particle. This is direct biological radiation damage. Likewise, DSBs
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could be produced by indirect biological radiation damage. In this case, e.g. two par-
ticle tracks could produce sublethal radiation damage to DNA with the ensuing single
strand breaks (SSB) whose subsequent interaction might lead to DSBs. This is one
example among many other pathways in the potential development of a lethal lesion
from sublethal radiation damage.

1.3 Cure and cell killing

The term “cell killing” does not necessarily mean that the cell is actually killed in
the literal sense of its total disintegration. For the latter to happen, much more energy
is necessary than what is actually being deposited at any given spatial point in the
treated tissue using most of the conventional radiotherapeutic modalities. Rather, by
convention, cell killing refers to fatal disruption of the reproductive integrity of the cell
[1]. Stopping cell divisions in a tumorous tissue amounts to cessation of proliferation
(as a way of forming clones, i.e colonies) and accomplishing this task is customarily
considered to be equivalent to curing the treated tissue. The tumor would disappear
altogether only if all the cancerous cells are eradicated. If only one tumor cell survives,
tumor control probability would be equal to zero. For this reason one might be inclined
to think that it is perhaps preferable to talk about cure rather than about cell kill. This
differentiation is more than just semantics.

1.4 Two main variabilities in cellular radiobiology

On top of different radiation modalities (photons, charged particles, etc.), cellular
radiobiology deals with two main variabilities. One is variability of dose in the irra-
diated volume. The other is variability of cell response. Both variabilities are multi-
faceted, ranging from some self-evident to more intricate, hidden aspects. Dose varies
through the irradiated tissue due to the stochastic nature of collisions among the beam
species and the targeted particles. This does not imply that dose variation is completely
random. Certain non-stochastic factors can also influence dose variability, e.g. organ
motion, some external settings, etc. Radiation imparts damage to both normal and
tumorous cells. Tumor topology is highly complex due to intertwining of healthy with
diseased tissue. Critical to the variability of cell responses are the two different ways
in which normal and tumor cells cope with the same radiation insult. This variabil-
ity implies the existence of different interaction mechanisms of radiation with these
two kinds of cells. Radically different proliferation rates represent the main cause of
unequal mechanisms for healthy and tumor cells. The former have a controllable cell
cycle, whereas the latter proliferate uncontrollably.

2 Classical hit-target methodologies

The principal assumption of the hit-target model is that each cell has one or more
sensitive sites [2–4]. In this formalism, it is supposed that a cell could lose its repro-
ductive capacity only if each sensitive site absorbs a certain amount of the impinging
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radiation one or more times. Here, radiation quanta are interpreted as radiation hits. As
will be elaborated in the next two subsections, there are four variants within this frame-
work, such as the single-target-single-hit (ST-SH), multi-target-single-hit (MT-SH),
single-target-multi-hit (ST-MH) and multi-target-multi-hit (MT-MH) models.

2.1 Single-target-single-hit model

In the ST-SH model, only one target per cell is considered. This single target must
absorb the mean lethal dose D0 in order to be inactivated. The corresponding cell
survival is:

S(ST−SH)
F (D) = e−D/D0 . (2.1)

Equivalently, the probability P for occurrence of a single lethal event following absorp-
tion of dose D is:

P(ST−SH)
F (D) = 1 − S(ST−SH)

F (D) = 1 − e−D/D0 . (2.2)

Mean lethal dose D0, which is also known as the D37 dose, represents the dose which
reduces cell survival by 1/e ≈ 0.37, or equivalently, by 37 % along the final (terminal)
part of the dose-effect curve. For this reason, D0 is often called the “final D0”.

2.2 Multi-target-single-hit model

Generalizing the simplest ST-SH model to the case with some n identical targets per
cell yields the MT-SH model. This time, a given cell would be killed whenever all its
sensitive sites (targets) are hit once. Thus, by assuming the identical radiosensitivity
1/D0 for all the n targets per cell, the probability for a lethal event in the MT-SH
model becomes:

P(MT−SH)
F (D) =

(
1 − e−D/D0

)n
. (2.3)

The associated surviving fraction reads as:

S(MT−SH)
F (D) = 1 − P(MT−SH)

F (D) = 1 −
(

1 − e−D/D0
)n

. (2.4)

The asymptotic behavior of this dose-effect curve at large doses D reads as:

S(MT−SH)
F (D) −→

D→∞ ne−D/D0 , (2.5)

where n is the extrapolation number. In a semilogarithmic graph of cell surviving
fraction SF as a function of dose D, the terminal part of this functional relationship
is a straight line with the slope 1/D0. If this final portion of the dose-effect curve is
extrapolated back to the ordinate SF(D), then the intercept of the said straight line
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with the ordinate at D = 0, i.e. the location of point SF(0), would represent precisely
n via {SF(D) ≈ ne−D/D0}D=0 = n. This is how the name “extrapolation number”
was assigned to quantity n from the high-dose asymptote of SF(D) in (2.5). Such a
plausible geometric interpretation of n with a graphical illustration has been given
by Atwood and Norman [5]. Subsequently, the same interpretation and terminology
were reintroduced by Alper et al. [6]. In the MT-SH model, extrapolation number n
is biologically interpreted as the number of targets (critical sites) in a given cell (in
which case n = 1, 2, 3, . . .). The initial slope of cell survival curve S(MT−SH)

F (D) in
the limit of small doses (D → 0) is zero. This is the result from the definition of the
initial slope si, as the derivative of the surviving fraction, (d/dD)S(MT−SH)

F (D), taken
at D = 0 :

MT − SH model :
⎧⎨
⎩

Initial slope ≡ si = 0

Final slope ≡ sf = k0 = 1

D0

. (2.6)

The initial slope si = 0 is biologically interpreted as an underestimation of the effect
of low-dose radiation. It should be noted, however, that zero-valued initial slopes are
not customarily confirmed by most experimental measurements on typical cell lines
encountered in radiobiology.

3 Two component model

3.1 Overcoming zero-valued initial slope of the classical hit-target model

It would be desirable to overcome the main drawback of the MT-SH model, i.e. the
zero-valued initial slope. This limitation can be lifted by using e.g. the two component
or two compartment (2C) model [7]:

S(2C)
F (D) = e−D/D1

[
1 −

(
1 − e−D/Dn

)n]

= S(1)
F (D)S(2)

F (D) (n = 2, 3, 4, . . .). (3.1)

The first component S(1)
F (D) = e−D/D1 describes a single-hit-single-target inactiva-

tion mode, where 1/D1 is the initial radiosensitivity as well as the initial non-zero
slope. In analogy to the mentioned alternative terminology “final D0” for the mean
lethal dose D0, we shall refer to D1 as the “initial D0” to denote survival reduction
by 1/e in the initial part of the dose-effect curve. The second component in (3.1) is
S(2)

F (D) = 1 − (1 − e−D/Dn )n , which represents the multi-target inactivation mode
with the associated radiosensitivity 1/Dn . Here, Dn with n ≥ 2 is termed the “MT-
final D0” of the multi-target part of inactivation, which is D0 dose required to reduce
survival by 1/e along the final portion of the dose-effect curve. The alternative labels
for D1 and Dn encountered in the literature are 1 D0 and n D0, respectively:

D1 ≡ 1 D0 , Dn ≡ n D0 . (3.2)
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In the high-dose limit, we have S(2)
F (D) ∼ ne−D/Dn , so when this is multiplied by

e−D/D1 from S(1)
F (D), according to (3.1) it follows:

S(2C)
F (D) −→

D→∞ ne−D/D1−D/Dn

≡ ne−D/D0 , (3.3)

where D0, as the final slope, is defined by:

1

D0
≡ 1

D1
+ 1

Dn
or D0 = D1 Dn

D1 + Dn
, (3.4)

D0 < D1 . (3.5)

The surviving fraction in the 2C model can alternatively be expressed as:

S(2C)
F (D) = e−D/D1

{
1 −

[
1 − e−D(1/D0−1/D1)

]n}
, (3.6)

where, by reference to (3.4), dose Dn from the part S(2)
F (D) of S(2C)

F (D) in (3.1) is
formally written in terms of the so-called “harmonic difference” of D0 and D1 :

1

Dn
= 1

D0
− 1

D1
. (3.7)

3.2 Effective dose as a halved harmonic mean of two asymptotes

Dose D0 from (3.4) is, by definition, the so-named effective dose, which is recognized
as the halved harmonic mean of D1 and Dn . In general, the harmonic mean (average)
h(a1, a2) of any two quantities or functions a1 and a2 is:

1

h(a1, a2)
= 2

(
1

a1
+ 1

a2

)
, h(a1, a2) = 2

a1a2

a1 + a2
(Harmonic mean) . (3.8)

A related quantity, which is frequently used in applications, is the halved harmonic
mean of a1 and a2 called the effective value aeff :

1

aeff
= 1

a1
+ 1

a2
, aeff = a1a2

a1 + a2
. (3.9)

In this way, the reciprocal of the final slope 1/D0 from (3.4) in the 2C model appears
as the effective dose D0 = Deff where:

Deff = D1 Dn

D1 + Dn
= D0 . (3.10)

It is well-known that for rate processes or rate reactions, the truest average of two
given quantities is provided by the so-called harmonic mean. Thus, Deff = D0 from
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(3.10) is the truest average of D1 and Dn in a modified hit-target theory given by the
two component model (3.3).

3.3 Radiosensitivities and dose reciprocals

Reciprocals of doses D0 , D1 and Dn are the corresponding positive-definite radiosen-
sitivities k0 , k1 and kn , respectively:

k0 = 1

D0
, k1 = 1

D1
, kn = 1

Dn
k0 > 0 , k1 > 0 , kn > 0

⎫⎬
⎭ . (3.11)

In analogy to the mentioned mean lethal doses 1 D0 and n D0 for D1 and Dn , the
alternative notations for the associated slopes k1 and kn are 1k0 and nk0, respectively:

k1 ≡ 1k0 , kn ≡ nk0 , (3.12)

with the same meaning 1k0 = (1 D0)
−1 and nk0 = (n D0)

−1. Thus, using (3.5) and
(3.11), we have:

k0 > k1 . (3.13)

The initial and final slope in the 2C model are given by:

2C model :

⎧
⎪⎨
⎪⎩

Initial slope ≡ si = k1 = 1

D1

Final slope ≡ sf = k0 = 1

D0

. (3.14)

It is also useful both in experiment and theory to consider the quotient of the initial and
final slopes or the associated doses. For example, the dose quotient D1/D0 is called
“the initial-to-final mean lethal dose ratio”. Its reciprocal (1/D1)/(1/D0) = k1/k0
has three alternative names such as “the initial-to-final slope ratio”, “the initial-to-final
radiosensitivity ratio” and “the initial-to-final inactivation constant ratio”. For brevity,
quotient k1/k0 shall hereby be denoted by a positive dimensionless constant f whose
value belongs to the interval (0,1):

f = k1

k0
(Initial−to−final slope ratio)

f = D0

D1
(Final−to−initial mean lethal dose ratio)

0 < f < 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.15)

where (3.5) and (3.13) are employed to deduce the stated inequality. Using these
definitions, we can rewrite the reciprocal 1/D0 from (3.4) as:

k0 = k1 + kn . (3.16)
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Thus, while dose D0 from (3.4) is the halved harmonic mean of D1 and Dn , the
associated radiosensitivity k0 in (3.16) is the doubled arithmetic mean. Furthermore:

f + g = 1 , (3.17)

where g is associated with the multitarget inactivation mode:

g = kn

k0
(Ratio of final slopes : multi−target−to−single−target)

g = D0

Dn
(Ratio of final D37 doses : single−target−to−multi−target)

0 < g < 1 , n ≥ 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (3.18)

3.4 Relative radiosensitivity

Within the 2C model, it is useful to have a measure of the effect of the multi-target
radiosensitivity. This can be assessed by means of the relative radiosensitivity intro-
duced through the quotient of the multi- and single-target dimensionless radiosensi-
tivities 1/Dn and 1/D1, respectively:

m ≡ D1

Dn
= kn

k1
, m > 0 . (3.19)

By means of (3.19), one can express the quotients of sensitivities 1/D0 and 1/D1 as
well as of 1/D0 and 1/Dn via:

D1

D0
= 1 + m = k0

k1
,

Dn

D0
= 1 + m

m
= k0

kn
. (3.20)

Thus, the “initial-to final D0 ratio” D1/D0 is expressed as 1 + m. The three radiosen-
sitivity ratios k1/k0 , kn/k0 and kn/k1 written in terms of parameters f and g take
the form:

k1

k0
= f ,

kn

k0
= g ,

kn

k1
= g

f
. (3.21)

Likewise, the quantities f and g expressed by means of m read as:

f = 1

1 + m
, g = m

1 + m
, g = m f . (3.22)

It follows from (3.20) that very large values of m would stem from very small values
of k1 that are, in turn, associated with negligibly small or near-to-zero initial slope
of the surviving fraction. Given that m > 0, as per (3.19), the first of the relations
from (3.20), i.e. 1 + m = k0/k1 evidently implies k0/k1 > 1, in agreement with (3.4).
On the other hand, writing the second relation from (3.20) as 1 + 1/m = k0/kn , it
obviously follows that 1 + 1/m = k0/kn > 1, so that 0 < g < 1, as in (3.18).

123



J Math Chem (2013) 51:2572–2607 2581

Using parameter m, dose Dn associated with the multi-target inactivation becomes:

Dn = 1 + m

m

Dq

ln n
= 1

g

Dq

ln n
, (3.23)

where Dq is the quasi-threshold dose which represents the width of a shoulder in a
survival curve:

Dq = D0 ln n . (3.24)

In a semilogarithmic plot for SF(D) versus D, the location of dose Dq is precisely at
the point of intersection of the back-extrapolated linear, terminal part of the dose-effect
curve with the horizontal straight line at the level of 100 % survival with SF(Dq) = 1,
where Dq �= 0.

3.5 Different, equivalent forms of cell surviving fractions

The 2C model from (3.1) can be cast in different forms involving radiosensitivities as:

S(2C)
F (D) = e−D/[(1+m)D0] {1 −

(
1 − e−m D/[(1+m)D0])n}

, (3.25)

or equivalently,

S(2C)
F (D) = e−k1 D

[
1 −

(
1 − e−kn D

)n]
. (3.26)

Employing (3.16) to write radiosensitivity kn as the “arithmetic difference”:

kn = k0 − k1 , (3.27)

we can express the part S(2)
F (D) from S(2C)

F (D) in (3.26) in terms of k0 and k1 :

S(2C)
F (D) = e−k1 D

{
1 −

[
1 − e−(k0−k1)D

]n}
. (3.28)

The cell surviving fraction S(2C)
F (D) written in terms of f and g takes the form:

S(2C)
F (D) = e− f D/D0

{
1 −

[
1 − e−gD/D0

]n}
. (3.29)

All of the above equivalent expressions, such as (3.1), (3.25), (3.28) and (3.29) for
the dose-effect curve S(2C)

F (D) in the 2C model have three parameters, involving
one of these three-element sets: {n; D1, Dn} , {n; m, D0} , {n; k1, kn} or {n; f, D0},
respectively. Importantly, irrespective of which set is chosen, the parameters of the 2C
model have a clear and simple biological interpretation. Common to all the sets from
this model is the extrapolation number n, which represents the number of sensitive
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sites or targets in the given cell. The considered cell is viewed as killed if radiation hits
every single target in that cell once. Further, parameters k1 = 1/D1 and k0 = 1/D0
are the initial and final radiosensitivities. Here, alongside the mean lethal dose D0, we
have dose D1 which is associated with the single-target inactivation mode S(1)

F (D) =
e−D/D1 = e−k1 D . Similarly, parameter kn = 1/Dn is the radiosensitivity, which
corresponds to the multi-target inactivation mode S(2)

F (D) = (1 − e−D/Dn )n = (1 −
e−kn D)n . As per (3.15), parameter 1+m = k0/k1 is “the final-to-initial radiosensitivity
ratio”. On the other hand, the difference k0 − k1 coincides precisely with kn , which is
the radiosensitivity from the multi-target cell kill mode, kn = k0 −k1 = 1/D0 −1/D1.
Likewise, mathematical and graphical illustration of parameters such as n, k1 and k0 is
also straightforward. Thus, n is the extrapolation of the terminal, exponential section
of the dose-effect curve back to the maximal, i.e. 100 % surviving fraction. Moreover,
k1 and k0 are the initial and final slopes of the same dose-effect curve S(2C)

F (D) in the
two component model.

4 The concept of cell repair

4.1 The prescribed behaviors of surviving fractions at low and high doses

Physically, it is expected that a repair system will not be active at small and large
doses [1]. This is plausible because insufficient cell damage at very low doses is
unlikely to trigger the repair system. Likewise, at very high doses, a large number of
lesions would overwhelm and, thus, inactivate any repair system, which could itself be
damaged by strong radiation. In both cases, without a functioning repair mechanism,
a purely exponential cell kill would prevail [8–10]:

− ln SF(D) −→
D→0

k1 D , (4.1)

− ln SF(D) −→
D→∞ k0 D − ln n , (4.2)

where k1 and k0 retain the same meaning of the initial and final slopes of the dose-
effect curve as in the ST-SH model. Here, parameter n is also called the extrapolation
number which, however, unlike the MT-SH model, is unrelated to the number of targets.
Nevertheless, repair models also retain the generic relation (3.24) from the MT-SH
model to connect the extrapolation number n with the mean lethal dose D0 and the
quasi-threshold dose Dq. Moreover, ratio f = k1/k0 of the initial-to-final slope from
(3.15) from the hit-target description has an additional meaning in repair models,
where it is re-labeled by fu = k1/k0, and interpreted as the fraction of unrepaired
lesions. Consequently, the complement 1 − fu is the fraction of repaired lesions as
labeled by gr with gr = (1 − fu)/k0 ≡ k2/k0 :

fu = k1

k0
(Fraction of unrepaired lesions)

gr = k2

k0
(Fraction of repaired lesions)

fu + gr = 1 (0 < fu < 1 , 0 < gr < 1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (4.3)
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where similarly to (3.16) we have,

k0 = k1 + k2 . (4.4)

This is reminiscent of (3.21) from the hit-target formalism, where ratio kn/k0 from
(3.18) is denoted by g such that f + g = 1 as per (3.17). We see that in repair models,
quantity k2 from (4.3) formally resembles the final slope kn associated with the multi-
target inactivation mode in the MT-SH model. Similar relationships also hold among
the equivalent quantities that are dose reciprocals from (3.11):

D0 = 1

k0
, D1 = 1

k1
, D2 = 1

k2
, D0 < D1

k0 > 0 , k1 > 0 , k2 > 0 , k0 > k1

⎫
⎬
⎭ , (4.5)

where D0 has the same meaning of the mean lethal dose as in the hit-target theory.
Further, in repair models, dose D2 is the formal counterpart of dose Dn from the
multi-target framework. However, in repair models, D1 and D2 are interpreted as
doses required to produce the fractions fu and gr of unrepairable and reparable lesions,
respectively. These formal similarities of parameters from repair and hit-target models
should not be taken too literally. Such resemblances are mentioned here merely to make
a symbolic reference to a more frequently used hit-target formalism rather than drawing
its potential mechanistic link to repair models. In fact, a deeper relation between the
two descriptions is precluded by the occurrence that repair models make no recourse
whatsoever to the notion of a target in the biological interpretation of the cell response
to radiation.

By reference to (3.19), we can introduce the quotient of the radiosensitivities k2
and k1 as:

μ = k2

k1
, μ > 0 , (4.6)

or alternatively by means of (4.3):

μ = gr

fu
. (4.7)

With these definitions, similarly to (3.22), the lesion fractions fu and gr can be written
in terms of μ via:

fu = 1

1 + μ
, gr = μ

1 + μ
, gr = μ fu , (4.8)

as in (3.22) from the 2C model where m is used instead of μ = k2/k1 with m = kn/k1.
Employing (3.24), (4.3) and (4.6), we can write the radiosensitivity k2 by means of
the quasi-threshold dose Dq, the natural logarithm ln n of the extrapolation number n
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and the fraction of repaired lesions gr :

k2 = gr
ln n

Dq
, (4.9)

or equivalently, using the relation D2 = 1/k2 from (4.5):

D2 = 1

gr

Dq

ln n
, (4.10)

which has the form (3.23) from the 2C model.

4.2 Repair function

The effect of cell repair will be in mitigating the damage from radiation by reducing
the influence of the direct cell kill mechanism (∼ D). This can be modeled at any
dose D by requiring that − ln SF(D) has two components as:

− ln SF(D) = k0 D − F(D) , (4.11)

SF(D) = e−k0 D+F(D) , F(D) > 0 , ∀ D . (4.12)

Here, F(D) is a positive-definite unspecified repair function which, however, must
have the correct asymptotes prescribed by (4.1) and (4.2) at low and high doses:

F(D) ≈
{

F0 ≡ k D , D −→ 0

F∞ ≡ ln n , D −→ ∞ ,
(4.13)

with,

k ≡ k0 − k1 > 0 , (4.14)

where the inequality follows from (4.5). The ansatz F(D) ≈ F0 ≡ k D at D → 0,
with the definition k ≡ k0 − k1 from (4.14), automatically secures the correct limit
F(D) ≈ k1 D at small doses from (4.1) via:

−ln SF(D)=k0 D − F(D) −→
D→0

k0 D−F0 =k0 D−k D =k0 D − (k0 − k1)D =k1 D

∴ − ln SF(D) −→
D→0

k1 D (QED).

Similarly, F(D) ≈ F∞ ≡ ln n at D → ∞ from (4.13) guarantees the existence of
the proper asymptote (4.2) through:
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− ln SF(D) = k0 D − F(D) −→
D→∞ k0 D − F∞ = k0 D − ln n

∴ − ln SF(D) −→
D→∞ k0 D − ln n (QED).

By reference to (4.4), quantity k is identified as the radiosensitivity k2 :

k = k2 . (4.15)

Thus, it follows that all the repair models that are constrained to satisfy the prescribed,
correct boundary conditions at both dose limits D → 0 and D → ∞, according to
(4.11) and (4.13), formally have the same three parameters {k1, k0, n} as in the two
component model {k1, k0, n}. However, the meanings of n and k0 − k1 are different
in the 2C model where k0 − k1 = kn and repair models for which k0 − k1 = k2.

An adequate repair model should have a plausible working hypothesis in assuming
the existence of a cell repair system, which is active at low-to-intermediate doses, but
whose capacity and effectiveness declines with increased doses, until it eventually
ceases to function for high irradiation. In this hypothesis, all the potentially lethal
lesions would become truly lethal at very large doses. This signifies that the repair
system is saturated in the sense of being completely consumed, i.e. used up for repair
and/or itself inactivated by radiation. The goal of this hypothesis is that the same
function F(D) yields a surviving fraction SF(D), which would then be universally
valid at all doses, from the regions of weak through intermediate to strong irradiations.
This gives an opportunity for the introduction of a novel universal model, which is the
subject of the next section.

5 Padé linear-quadratic or differential Michaelis–Menten model

5.1 Effective repair function as a halved harmonic mean of two asymptotes

The occurrence that F(D) is left unspecified, except for the imposed asymptotic behav-
iors in (4.13) is convenient, since it permits the introduction of various repair mod-
els for different choices of function F(D). With this goal, we are presently seeking
a biologically-interpretable surviving fraction SF(D), which would simultaneously
encompass the correct low- and high-dose limits (4.1) and (4.2), respectively. This
would make the dose-effect curve universal due to a simultaneous and proper extrap-
olation to small and large doses. Moreover, the same response function SF(D) must
also correctly interpolate from both ends (D → 0 and D → ∞) to the intermediate
dose region, where a shoulder of the survival curve resides. In other words, the sought
function ought to have simultaneously interpolating and extrapolating features, with a
smooth passage from low through intermediate to high doses. Among such functions
there is the well-known category of rational functions in the mathematical theory of
approximations. The most prominent example of these functions is the Padé approxi-
mant (PA) [11].
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It will be shown in this section that the PA need not be introduced ad hoc as a new
radiobiological model. Rather, this function shall emerge naturally from the simple
concept of the halved harmonic mean of the two extreme limits of very small and
very large doses for the repair function F(D) in the biological effect (BE), EB ≡
− ln SF(D) = k0 D − F(D), from (4.11). The same surviving fraction in the ensuing
approximation called the Padé linear-quadratic (PLQ) [12–15] model will also be
shown later to be rooted in the repair mechanism of Michaelis–Menten type [16].

Because surviving phenomena are intrinsically based upon rate processes, it is
appropriate to specify the unknown function F(D) as the halved harmonic mean of
the low- and high-dose asymptotes F0 and F∞ of F(D) from (4.13). This defines the
effective repair function Feff(D) according to (3.9):

F(D) ≈ Feff(D) , (5.1)

where

1

Feff(D)
= 1

F0
+ 1

F∞
, Feff(D) = F0 F∞

F0 + F∞
; F0 = k2 D , F∞ = ln n .

(5.2)

By reference to (3.4), this is symbolically reminiscent of the introduction of the effec-
tive dose Deff , as the mean lethal dose D0, by the halved harmonic mean of D1 and Dn

for the single- and multi-target inactivations in the 2C model. An alternative expression
for Feff(D) is deduced from (4.13) and (5.1) via:

Feff(D) = k2 D

1 + γ D
, (5.3)

with

γ = k2

ln n
. (5.4)

Using (4.9), parameter γ can be expressed as the ratio of the number of repaired lesions
gr and the quasi-threshold dose Dq :

γ = gr

Dq
. (5.5)

With the relations (5.4) and (5.5) at hand, the repair function (5.3) can alternatively
be written as:

Feff(D) =
(

γ D

1 + γ D

)
ln n =

(
gr D/Dq

1 + gr D/Dq

)
ln n . (5.6)

This transparently shows that Feff(D) reduces to the logarithm of the extrapolation
number at large doses, i.e. Feff(D) −→ ln n as D 
 1/γ . In the opposite limit of
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small doses, it directly follows from (5.6), with the help of (5.4), that Feff(D) −→ k2 D
as D � 1/γ . Taken together, these two limits of small and high doses are seen to
fully preserve the asymptotes in (4.13) on account of (4.15).

For the choice (5.1) via F(D) ≈ Feff(D), with Feff(D) given by (5.4), we can
cast Eq. (4.11) for the negative logarithmic surviving fraction, or equivalently, the BE,
denoted by EB, to the following form:

− ln SF(D) = EB ≈ k0 D − Feff = D

D0
−

(
γ D

1 + γ D

)
ln n

= αD + βD2

1 + γ D
, (5.7)

where,

α = k1 , β = k0γ . (5.8)

Since ln n > 0 , k0 > 0 and k1 > 0, as per (3.11), it follows that all three parameters
α, β and γ are also positive-definite:

α > 0 , β > 0 , γ > 0 . (5.9)

The result (5.7) is associated with the PLQ model, which has recently been introduced
in Refs. [12–15] in a completely different way:

− ln S(PLQ)
F (D) = E(PLQ)

B . (5.10)

Here, E(PLQ)
B is the BE in the PLQ model:

E(PLQ)
B = αD + βD2

1 + γ D
, (5.11)

in terms of which the surviving fraction reads as:

S(PLQ)
F (D) = e−EPLQ

B = e− αD+βD2

1+γ D . (5.12)

The name of this model and its acronym PLQ stem from a formal appearance of the
BE from the linear-quadratic (LQ) model [17]:

E(LQ)
B = αD + βD2 , (5.13)

in the numerator of the rational function (αD + βD2)/(1 + γ D) from (5.10), which
itself is a particular form of the general PA [11]. The PLQ model can alternatively be
called the “Differential Michaelis–Menten” (DMM) model for the reason which will
become clear later when we examine the link of the investigated repair pathway with
the Michaelis–Menten mechanism of enzyme catalysis [16].
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It is well-known that a given function f (x), possessing the known series expansion
in powers of the independent variable x , can be optimally represented by a rational
function through the unique ratio of two polynomials PL/QK of degrees L and K :

f (x) ≈ PL(x)

QK (x)
≡ [L/K ] f (x) . (5.14)

This is a general PA of the order or rank [L/K ] as symbolized by [L/M] f (x). Regard-
ing this special and admittedly curious historical notation, only the letter f for the name
of the general dependent variable appears in the subscript of the Padé symbol [L/K ].
On the other hand, the independent variable x is written as the argument of [L/K ],
i.e. on the same line as the symbol [L/K ] via [L/K ] f (x). The diagonal and nondiag-
onal versions of the PA are associated with the equal and unequal polynomial degrees
L = K and L �= K , respectively. In particular, the cases L = K − 1 and L = K + 1
are called the paradiagonal PAs. Thus, the BE in (5.7) from the PLQ model is the
paradiagonal PA (L = K + 1, K = 1) of the rank [2/1] to the corresponding exact
(exa), but otherwise unknown BE, E(exa)

B (D) = E(exa)
B :

E(exa)
B (D) ≈ E(PLQ)

B (D)

= αD + βD2

1 + γ D
= [2/1]

E(exa)
B

(D) . (5.15)

Instead of the unavailable E(exa)
B (D), we can use the BEs measured in experiments

(exp), E(exp)

B (D), which might be modeled by E(PLQ)
B (D) :

E(exp)

B (D) ≈ E(PLQ)
B (D) . (5.16)

In such a case, E(exp)

B (D) would be parametrized according to the BE in the PLQ model,

so that E(exp)

B (D) ≈ (αD + βD2)/(1 + γ D). Overall, the dose-effect survival (5.7)
is derived here from the general conditions (4.11)–(4.15) that every adequate repair
model must satisfy. The obtained specific formula (5.7) is plausible and straightforward
because it directly exploits the threefold prior information:

(a) The general prescription (4.11) or (4.12) for the introduction of a repair function
F(D),

(b) The expressions (4.13)–(4.15) for the simultaneously imposed asymptotic behav-
iors F0 and F∞ of the unknown repair function F(D) in the limits of small
(D → 0) and large (D → ∞) doses, respectively, and,

(c) The fact that for the rate-based phenomena, such as cell survival, the truest average
value of the given asymptotes F0 and F∞ is the halved harmonic mean or the
effective repair function Feff(D) from (5.2).

Finally, the three steps (a)–(c), together with the approximation of the unknown
function F(D) by the effective repair functions Feff(D) via F(D) ≈ Feff(D), led
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straight to the novel expressions (5.7) in the field of radiobiological modeling of cell
surviving fractions after irradiation. Since the general 3-parameter form (4.11) for all
repair models is used from the outset, this new model (5.7) also has three parameters.
According to (5.7) these parameters are specified as α, β and γ .

5.2 The biological meaning of the parameters and their correlations

The presented derivation is instructive, since it shows that the parameters α, β and
γ possess a clear biological meaning. This follows from the connection of the triple
{α, β, γ } with the extrapolation number n, as well as the initial (k1) and final (k0)

slopes of a cell survival curve through the relations:

α = k1 , β = k0(k0 − k1)

ln n
, γ = k0 − k1

ln n
, (5.17)

where the link β = k0γ from (5.8) is preserved such that,

γ

β
= 1

k0
= D0 . (5.18)

Thus, in the PLQ model, there exists an inter-parameter dependence, with both β and
γ being correlated to α. It is useful to make this fact transparent on the level of the
principal observables, the BE and the surviving fraction, as well:

E(PLQ)
B =

k1 D + k0
k0 − k1

ln n
D2

1 + k0 − k1

ln n
D

, (5.19)

S(PLQ)
F (D) = exp

⎛
⎜⎝−

k1 D + k0
k0 − k1

ln n
D2

1 + k0 − k1

ln n
D

⎞
⎟⎠ . (5.20)

If the initial and final slopes were equal (k0 = k1), parameters β = k0(k0 −
k1)/(ln n) = k0γ and γ = (k0 − k1)/(ln n) in the numerator and denominator of
the rational function from (5.20) or (5.19) would become zero. In this case, Eq. (5.20)
would coincide with the ST-SH surviving fraction (2.1), which exhibits a purely expo-
nential cell-kill mode with no shoulder:

{
S(PLQ)

F (D)
}

k0=k1
= S(ST−SH)

F (D) = e−k0 D , (5.21)

as in (2.1) where we used the relation k0 = 1/D0. This is a straight line in a semi-
logarithmic plot of SF(D) versus dose D associated with a dose-effect curve with no
shoulder. Conversely, a shoulder would appear in the same plot whenever k0 �= k1.
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5.3 Full-effect plot

Also illustrative is the so-called Fe-plot (Fe = Full effect) [18] for a graphical display
of the function −(1/D) ln SF(D) against dose D for any surviving fraction SF(D) :

kD ≡ − 1

D
ln SF(D) ≡ Fe(D) (Full effect) . (5.22)

There is yet another alternative name for the Fe-plot and that is the reactivity [19],
which is denoted by R(D) :

Fe(D) = R(D) = − 1

D
ln SF(D) ≡ Fe(D) . (5.23)

In the case of the PLQ model, from the defining relation:

k(PLQ)
D ≡ − 1

D
ln S(PLQ)

F (D) = Fe(PLQ)(D) , (5.24)

we have,

k(PLQ)
D = k1 + k0γ D

1 + γ D

=
k1 + k0

k0 − k1

ln n
D

1 + k0 − k1

ln n
D

, (5.25)

or equivalently, by reference to (3.11):

k(PLQ)
D = 1/D1 + γ D/D0

1 + γ D

=
1/D1 + 1/D0 − 1/D1

D0 ln n
D

1 + 1/D0 − 1/D1

ln n
D

. (5.26)

By employing (4.3) in (5.25), the ratio k(PLQ)
D /k0 can be expressed in terms of the

fractions of unrepaired ( fu) and repaired (gr) lesions alongside the quasi-threshold
dose Dq as:

k(PLQ)
D

k0
= fu + gr D/Dq

1 + gr D/Dq
= fu + γ D

1 + γ D
, (5.27)

k(PLQ)
D

k0
−→

D→∞ 1 . (5.28)
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On account of the relation fu = 1 − gr from (4.3), it is seen that the rhs of Eq. (5.27)
contains only two unknown parameters gr and Dq. Using the relation γ = gr/Dq from
(5.5), these unknown parameters could equivalently be fu and γ , in which case Eq.
(5.27) becomes k(PLQ)

D /k0 = ( fu +γ D)/(1+γ D). In the Fe-plot, function k(PLQ)
D /k0

versus D appears as a rectangular hyperbola, which levels off (saturates) at large doses
by being reduced to a constant (unity), as per (5.28). A similar pattern is seen in the
second-order kinetics for enzyme catalysis in the Michaelis–Menten formalism [16].

The Fe-plot directly shows the quotient of the BE and dose. This is because the BE,
EB, in any model is defined by EB = − ln SF(D). On the other hand, the biologically
effective dose (BED) and the relative effectiveness (RE) are defined by BED = EB/α

and RE = BED/D, where α is the radiosensitivity for the single-hit inactivation mode
of cell kill. In this context, the term αD represents the number of expected lesions
caused by the single-hit mechanism of cell kill. Therefore, the function shown in the
Fe-plot is equal to the BE divided by dose or proportional to either RE or the ratio of
the BED and dose:

− 1

D
ln SF(D) = EB

D
= α RE

= α
BED

D
. (5.29)

5.4 Universal radiosensitivity containing both the initial and final slopes

Quantity kD from (5.22) is the dose-dependent relative radiosensitivity in terms of
which the general cell surviving fraction (5.20) reads as:

SF(D) = e−kD D . (5.30)

In the PLQ model this becomes:

S(PLQ)
F (D) = e−k(PLQ)

D D . (5.31)

Further, k(PLQ)
D is viewed as a generalized “slope” of the dose-effect curve (5.26).

The term “generalized” refers to a local, i.e. dose-dependent “slope”. The use of the
adjective “universal” stems from the fact the dose-dependent “slope” k(PLQ)

D inherently
contains both the initial (k1) and final (k0) genuine slopes. These latter two slopes are
material constants (as they ought to be) that every proper repair model of the types
(4.1) and (4.2) must possess. They can be immediately identified from (5.25) in the
limits D → 0 and D → ∞, respectively:

k(PLQ)
D ≈

⎧
⎪⎨
⎪⎩

k1 = 1

D1
, D −→ 0

k0 = 1

D0
, D −→ ∞ .

(5.32)
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Thus, we can see the universal applicability of the local radiosensitivity k(PLQ)
D stems

from its correct limits at small and large doses.

5.5 The explicit link between the Padé linear-quadratic model and
Michaelis–Menten enzyme catalysis for repair of radiation lesions

Using (5.27), the surviving fraction (5.30) can also be written in the form:

S(PLQ)
F (D) = e

−k0 D
fu+gr D/Dq
1+gr D/Dq . (5.33)

Thus, the rectangular parabola ( fu + gr D/Dq)/(1 + gr D/Dq) from (5.33) is seen
to represent a measure of the influence of repair to cell survival in the PLQ model
relative to the purely exponential inactivation responsible for production of lethal (i.e.
irreparable) lesions:

S(Lethal)
F (D) = e−k0 D = e−D/D0 . (5.34)

This was also encountered earlier in the surviving fraction S(ST−SH)
F (D) from (5.21)

in the ST-SH model.
An alternative display of the repair effect in the cell surviving fraction S(PLQ)

F (D)

can be made apparent by using the relation fu = 1 − gr which gives:

S(PLQ)
F (D) = e

− D
D0

(
1− gr

1+gr D/Dq

)
. (5.35)

The second term in the parenthesis isolates the repair mechanisms, the consequence of
which is to reduce the single event inactivation e−D/D0 by a factor gr/(1 + gr D/Dq)

multiplied by D/D0. This reduction yields the repair probability e(D/D0)[gr/(1+gr D/Dq)]
which mitigates the impact of radiation via:

S(PLQ)
F (D) = S(Lethal)

F (D)S(Repair)
F (D) , (5.36)

where,

S(Repair)
F (D) = e

gr D/D0
1+gr D/Dq = ek2 D/(1+Dk2/ ln n) , (5.37)

where (4.9) is used via gr/D0 = gr(Dq/D0)/Dq = {gr ln n}/Dq = k2 and gr/Dq =
k2/ ln n = γ . Thus, the cell survival S(PLQ)

F (D) in the PLQ model is a product of the

probability S(Lethal)
F (D) = e−D/D0 for radiation-induced lethal lesions and the repair

probability S(Repair)
F (D). According to (5.37), the positive logarithm of the repair

probability S(Repair)
F (D) reads as:

ln S(Repair)
F (D) = gr D/D0

1 + gr D/Dq
= k2 D

1 + Dk2/ ln n
. (5.38)
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This function is proportional to D at small D and it saturates towards a constant ln n
at large doses:

ln S(Repair)
F (D) ≈

⎧⎨
⎩

gr

D0
D = k2 D , D −→ 0

ln n , D −→ ∞ .
(5.39)

The only parametric dependence of the surviving fraction S(Lethal)
F (D) from (5.34) for

the direct cell kill pathway with no possibility for repair is the mean lethal dose D0. By
contrast, repair is modeled by the remaining 2 parameters, the rate k2 for production of
repaired lesions and the logarithm ln n of the extrapolation number n. While D0 and
k2 are quantities of self-evident biophysical meaning, ln n is a parameter introduced
from a convenient geometrical interpretation, but its biological interpretation also
needs to be established within all the repair-based models. In the classical multi-target
hit model, the extrapolation n is viewed as the number of targets within the cell. In
the literature, n has often been reported to belong to a set of huge numbers (1000 or
more). However, it is unrealistic that killing a single cell would necessitate inactivation
of thousands of its sensitive sites. Therefore, the interpretation of n as the number of
targets is inadequate and should be abandoned in every radiobiological model which
relies on repair mechanisms. Instead, a biophysical and biochemical meaning of the
extrapolation number n is needed. This will emerge naturally from casting the PLQ
model into the framework of chemical kinetics, as it will be shown here.

As usual, the concentration of radiation lesions [L] of the cell is assumed to be
proportional to the absorbed dose D as, for instance:

[L] = k0 D = D

D0
. (5.40)

Employing this relationship, we can cast (5.36)–(5.38) into the following forms:

ln S(Lethal)
F (D) = −[L] , (5.41)

ln S(Repair)
F (D) = vr,0 , (5.42)

ln S(PLQ)
F (D) = −[L] + vr,0 , (5.43)

where vr,0 and Kr,M are constants,

vr,0 = vr,max[L]
Kr,M + [L] , (5.44)

vr,max = ln n , Kr,M = ln n

gr
. (5.45)

In particular, Kr,M is a special value of the concentration of lesions [L] for which
the repair contribution vr,0 is reduced to vr,max/2. Namely, when the varying [L]
becomes equal to Kr,M, it follows from (5.44) that {vr,max}[L]=Kr,M = vr,max/2. Max-
imum vr,max is the asymptote of vr,0 in the limit [L] → ∞. Thus, the logarithm
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ln S(Repair)
F (D) = vr,0 of the probability S(Repair)

F (D) is seen to quantify the concen-
tration of repaired lesions. This allows the following mechanistic interpretation of the
PLQ model:

(A) It is assumed that dose D absorbed by the cell without activation of the repair
system yields the expected concentration [L] of lethal lesions.

(B) When this assumption is made within the Poisson distribution of lesions, the
predicted probability that radiation quanta would yield only cell death is given
by S(Lethal)

F = e−[L].
(C) Activation of the repair system through a repair mechanism to be identified

reduces [L] by the concentration vr,max[L]/(Kr,M + [L]) of the repaired lesions
and modifies S(Lethal)

F = e−[L] from (B) by the multiplicative factor M([L]) ≡
S(Repair)

F . This increases the number of survivors to e−[L]M([L]), which is S(PLQ)
F :

S(PLQ)
F = e−[L]M([L]) , M([L]) = e

vr,max
[L]

Kr,M+[L] . (5.46)

Steps (A) and (B) are common to all the radiobiological models. However, step (C)
represents a distinct feature which is most responsible for the emergence of the PLQ
model. In order to complete the establishment of the PLQ model, it remains to spec-
ify the repair mechanism which yields the contribution S(Repair)

F (D) = evr,0 to the

surviving fraction S(PLQ)
F (D).

With this goal, we shall postulate that the repair mechanism in the PLQ model
consists of interactions of lesions [L] with certain molecules [E] that are capable
of repairing radiation damage of the cell. These substances will hereafter be called
repair molecules and they shall initially be specified only by way of their bonding
with [L]. The interactions between [L] and [E] will be supposed to occur through a
chemical reaction which has two irreversible pathways or steps or subreactions. In
the first subreaction, the lesions [L] and repair molecules [E] are assumed to interact
irreversibly with a rate constant k1 during a time t1 by forming an intermediate complex
[EL]:

[E] + [L] −→
k1

[EL] . (5.47)

Complex [EL] is considered as an unstable molecule with a relatively short lifetime
which leads to decay of [EL]. As such, in the second subreaction, the metastable
compound molecules [EL] will irreversibly dissociate during a time t2 with a rate
constant k2. This step is envisaged to yield the products [P], as the repaired lesions,
and the free intact repair molecules [E]:

[EL] −→
k2

[E] + [P] . (5.48)

In other words, unlike [L] and [P], it is assumed that repair molecules [E] do not
change their state throughout the interaction. In particular, the concentration [E] ≡
[E](t) ≡ [E]t of repair molecules at any given instant t is viewed as unaltered and
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thus equal to the initial concentration [E]0 ≡ [E](0), which was available at the very
beginning (t = t0) of the interactions.

Time t1 is inversely proportional to the concentration of lesions [L], as opposed to
t2 which is independent of [L] so that:

t1 = 1

k1[L] , t2 = 1

k2
. (5.49)

The total time ttot needed for completion of this two-step reaction, which is symbolized
by the chain of two irreversible channels:

[E] + [L] −→
k1

[EL] −→
k2

[E] + [P] , (5.50)

is given by:

ttot = t1 + t2 = 1

k1[L] + 1

k2
= k1 + k2[L]

k1k2[L] . (5.51)

Usually, rate constants are not measured directly in chemical kinetics experiments. The
velocity v0 of reaction (5.50) is proportional to the reciprocal 1/ttot, i.e. v0 ∼ 1/ttot.
This latter relation becomes an equality by introducing a proportionality constant,
which can be taken to be the initial concentration [E]0 of repair molecules, so that:

v0 = [E]0

ttot
. (5.52)

Therefore, on account of (5.51) and (5.52), it follows that the velocity for reaction
(5.50) is:

v0 = vmax[L]
KM + [L] , (5.53)

where,

vmax = k2[E]0 , KM = k2

k1
. (5.54)

The result (5.53) agrees with (5.44) upon the identifications:

vr,0 = v0 , vr,max = vmax , Kr,M = KM . (5.55)

The outlined procedure leading to Eq. (5.54) for the velocity v0 of repair molecules
in reaction (5.50) is recognized as the Michaelis–Menten [16] enzyme catalysis in the
derivation of van Slyke and Cullen [20]. Enzyme catalysis is a chemical reaction by
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which free enzymes [E] and substrate [S] interact by giving the unaltered [E] and the
product [P]:

[E] + [S] −→ [E] + [P] . (5.56)

The Michaelis–Menten mechanism for this process is a two-step reaction through
formation and destruction of the intermediate enzyme-substrate complex [ES]:

[E] + [S] −→
k1

[ES] −→
k2

[E] + [P] . (5.57)

Here, enzymes [E] and substrate [S] become temporarily united by forming the com-
pound [ES]. While being in [ES], enzymes [E] are able to diminish the activation
energy of [S] by rearranging the electronic configuration of the substrate to create the
product molecules [P]. Enzymes then expel the product [P] and set themselves free as
intact and continue binding to further molecules of substrate by way of reaction (5.57).
Numerous measurements in enzymology during an entire century have confirmed that
the Michaelis–Menten mechanism (5.57) operates in enzyme catalysis (5.56).

The constant KM from (5.54) is the well-known Michaelis–Menten constant for
the irreversible variant of enzyme catalysis, which is reaction (5.57). This realization
permits identification of the repair molecules [E] from the PLQ model as enzymes, the
great majority of which are proteins. Therefore, the contribution S(Repair)

F (D) = evr,0

to the surviving fraction S(PLQ)
F (D) from (5.54) in the PLQ model is now pinpointed

as being due to the Michaelis–Menten mechanism of catalysis by which enzyme
molecules can repair radiation lesions of the cell.

In biochemistry and enzymology with reference to standard experiments on enzyme
catalysis, both vmax and KM can be measured. If this is done also with the radiation
damaged tissue, the expression (5.46) would be free of adjustable parameters. In such
a case, modeling cell surviving fractions would amount to verifying whether measured
data obeys the form S(PLQ)

F from (5.46) as a function of the independent variable [L].
This is expected to be favorably confirmed, since the PLQ is demonstrated here to be
based on the Michaelis–Menten enzyme catalysis which has successfully passed the
test of time in biochemistry.

Using the established equivalence (5.55) of the Padé-based repair and the repair
mechanism via enzyme catalysis, we can rewrite (5.46) directly in the Michaelis–
Menten terminology as:

S(PLQ)
F = e−[L]+v0

= e
−[L]+vmax

[L]
KM+[L] , (5.58)

with the corresponding BE, E(PLQ)
F ≡ − ln S(PLQ)

F , given by:

E(PLQ)
B = [L] − v0

= [L] − vmax
[L]

KM + [L] . (5.59)
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The first term [L] in Eq. (5.59) is the concentration of lesions due to direct radiation
impact in the absence of any repair activity of enzyme molecules. However, once a
certain threshold of damage has been reached, this direct radiation event is counter-
acted in E(PLQ)

B by the second term v0, which is the initial enzyme velocity from the
Michaelis–Menten equation v0 = vmax[L]/(KM + [L]) for catalytic repair of lesions.
In this way, the BE of direct radiation damage, given through concentration [L] of
lesions, becomes reduced by the action of cell repair with rate v0 of enzyme cataly-
sis (5.57). On the other hand, and by definition, velocity v0 is the rate of differential
change (decrease) of concentration [L] of lesions with the passage of time, i.e. the
negative first derivative via v0 = −(d/dt)[L](t). For this reason, the second term
v0 = vmax[L]/(KM + [L]) from (5.59) is called the rate version or the differential
variant of the Michaelis–Menten Eq. (5.53) for enzyme catalysis (5.57). Therefore, the
ensuing PLQ model from (5.58) or (5.59) could equivalently be called the differential
Michaelis–Menten model, or DMM, for cell survival after irradiation:

S(DMM)
F = S(PLQ)

F , E(DMM)
B = E(PLQ)

B . (5.60)

This is an alternative to the integrated Michaelis–Menten (IMM) model [21], which
determines the BE by means of the Lambert W0 function as the result of integration
of the Michaelis–Menten differential Eq. (5.53) rewritten as:

d[L]
dt

= −vmax
[L]

KM + [L] , [L] = [L](t) . (5.61)

As it stands, the PLQ model from Eq. (5.58) may seem to depend on only 2 parameters,
the maximal enzyme velocity vmax and the Michaelis–Menten constant KM. However,
this is not the case, since the actual independent variable for cell surviving fraction
is the absorbed dose D rather than the number of lesions [L]. Thus, returning to the
original independent variable D via D = D0[L] would bring back the mean lethal
dose D0, as the third parameter of the PLQ model:

S(PLQ)
F = e−D/D0+v0(D) ≡ e

−D/D0+vmax
D/D0

KM+D/D0 , (5.62)

E(PLQ)
B = D

D0
− v0(D) = D

D0
− vmax

D/D0

KM + D/D0
. (5.63)

Therefore, one of the triplets of the parameters from the PLQ model is the set
{D0, vmax, KM}. Once the mean lethal dose D0 is extracted graphically as the recip-
rocal of the final slope via the tangent to the terminal, exponential part of the sur-
vival curve in the semi-logarithmic plot of S(PLQ)

F (D) versus D, the representation
{D0, vmax, KM} of the PLQ model becomes particularly useful because the remaining
two parameters vmax and KM can also be determined graphically by the well-known
Lineweaver-Burk or Eadie-Hoftsee linearization of the Michaelis–Menten rectangular
parabola vmax(D/D0)/(KM + D/D0) for the initial velocity v0 [21].
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By using (5.54) to make the quotient vmax/KM, we can reconstruct the fraction gr
of repaired lesions as:

gr = vmax

KM
. (5.64)

Comparing (5.45) with (5.54) yields the relationships:

ln n = k2[E]0 , gr = k1[E]0 . (5.65)

This provides a direct interpretation of the extrapolation number n and the fraction
gr of repaired lesions in terms of the rate constants from reaction (5.50) and the
concentration [E]0 of repair molecules.

5.6 The main biological observables

The BE, E(PLQ)
B , in (5.11) from the PLQ model can be related to the corresponding

LQ-based BE, E(LQ)
B , from (5.13) by the relation:

E(PLQ)
B = E(LQ)

B

1 + γ D
. (5.66)

Further, it follows from (5.11) that the low- and high-dose asymptotes of E(PLQ)
B are

given by:

E(PLQ)
B −→

D→0
αD , (5.67)

E(PLQ)
B −→

D→∞
β

γ
D , (5.68)

respectively. For brevity, the high-dose asymptote (5.68) is written to exhibit only the
leading term (∼ D), whereas the constant (∼ D0 = 1) is ignored.

The expression for E(PLQ)
B from (5.11) leads to the corresponding biologically effec-

tive dose BED(PLQ) in the PLQ model:

BED(PLQ) ≡ E(PLQ)
B

α
= D + βD2/α

1 + γ D
. (5.69)

This can also be written as:

BED(PLQ) = D · RE(PLQ) , (5.70)

where RE(PLQ) is the PLQ-based RE:

RE(PLQ) = 1 + (β/α)D

1 + γ D
= RE(LQ)

1 + γ D
. (5.71)
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The corresponding quantities in the LQ model are given by:

BED(LQ) = D + β

α
D2 , (5.72)

RE(LQ) = 1 + β

α
D , (5.73)

BED(LQ) = D · RE(LQ) . (5.74)

Insertion of the asymptotes (5.67) and (5.68) for E(PLQ)
B into Eq. (5.69) yields:

BED(PLQ) −→
D→0

D , (5.75)

BED(PLQ) −→
D→∞

β

αγ
D . (5.76)

The associated behaviors in the LQ model read as:

E(LQ)
B −→

D→0
αD , (5.77)

E(LQ)
B −→

D→∞ βD2 , (5.78)

BED(LQ) −→
D→0

D , (5.79)

BED(LQ) −→
D→∞

β

α
D2 . (5.80)

5.7 Correct and smooth asymptotic behaviors at low and high doses

As expected, the PLQ and LQ models formally exhibit the same low-dose behaviors
in (5.79) and (5.75), albeit with possibly different numerical values of parameter α.
However, these two models differ substantially at high doses according to (5.80) and
(5.76). As a consequence of the behaviors (5.67) and (5.68) for E(PLQ)

B , the following

two asymptotes of S(PLQ)
F (D) exist at small and large values of D :

S(PLQ)
F (D) −→

D→0
e−αD , (5.81)

S(PLQ)
F (D) −→

D→∞ e−βD/γ . (5.82)

This gives the initial and final slopes si and sf in the dose-effect curve from the PLQ
model as:

PLQ :
⎧⎨
⎩

Initial slope ≡ si = α

Final slope ≡ sf = β

γ

. (5.83)
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In the high-dose asymptotes (5.82), only the leading term βD2 is retained in the
numerator of the BE, E (PLQ)

B = (αD + βD2)/(1 + γ D). However, it is also useful
to extrapolate the high-dose limit of the cell surviving curve back to the ordinate axis
(D = 0). This would give the extrapolation number n. Thus, alongside the same high-
dose approximation for the denominator 1+γ D ≈ γ D, which has already been made
in (5.82), we shall now retain the full numerator αD +βD2 in (αD +βD2)/(1+γ D)

to arrive at − ln S(PLQ)
F (D) −→

D→∞(αγ − β)γ 2 + (β/γ )D, so that:

S(PLQ)
F (D) −→

D→∞ e
β−αγ

γ 2 − β
γ

D
. (5.84)

This can conveniently be cast into the form:

S(PLQ)
F (D) −→

D→∞ ne− β
γ

D

ln S(PLQ)
F (D) −→

D→∞ ln n − β
γ

D

⎫
⎬
⎭ , (5.85)

where the extrapolation number n is identified as:

ln n = β − αγ

γ 2

= �sfi

γ
, �sfi = sf − si . (5.86)

Thus, the extrapolation number is proportional to the difference �sfi between the final
and initial slopes, n ∼ sf − si = �sfi. The extrapolation number n must be positive
and this imposes the following condition:

ln n > 0 if β > αγ . (5.87)

In this derivation, α, β and γ are considered as independent, uncorrelated parameters.
However, in the present formulation of the PLQ model, the inter-parameter correlations
from (5.17) constrains the relations among these parameters. Such correlations can be
exploited to check whether e.g. the condition αγ/β < 1 from (5.87) is fulfilled. Thus,
using (3.4) and (5.17) it follows:

αγ

β
= α

(
γ

β

)
= k1 D0 = k1

k0
< 1 (QED). (5.88)

Similarly, with the help of the relationships from (3.4) and (5.17), we have that the
initial and final slopes from (5.83) coincide with those from (3.14) via si = α = k1
and sf = β/γ = 1/D0 = k0. Likewise, the logarithm of the extrapolation number
from (5.86) is reduced to an identity:
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ln n = β − αγ

γ 2 = k0(k0 − k1)/(ln n) − k1(k0 − k1)/(ln n)

[(k0 − k1)/(ln n)]2

= k0 − k1

(k0 − k1)/(ln n)
= ln n (QED).

Moreover, comparing Eqs. (3.16) and (5.86), it follows that �sfi and the multi-target
inactivation constant k2 are the same:

�sfi = k2 . (5.89)

Remarkably, by reference to (5.88), the number of unrepaired lesions fu from (4.3)
appears now as a constant, which embodies all three parameters α , β and γ of the
PLQ model via:

fu = αγ

β
. (5.90)

Using this relation and recalling that in dosimetry [15,19], the ratio α/β is the dose-
averaged specific energy zD, we can write:

γ = fu

zD
, (5.91)

where,

zD = α

β
. (5.92)

Thus, the 3rd parameter γ from the PLQ model is the quotient of the fraction fu of
unrepairable, lethal lesions and the dose-averaged specific energy zD.

6 Results and discussion

The PLQ model is presently tested by comparing its predictions with the experimental
data for Chinese Hamster cell lines irradiated by 250 kVp X-rays1. Both cell surviv-
ing fractions as dose-effect curves (Fig. 1) and the corresponding relative radiosen-
sitivities of the cell as the Fe-plots (Fig. 2) are used in these comparisons between
measurements and theory. The LQ model is also employed. The parameters of the
LQ and PLQ models are reconstructed from non-linear least-square minimizations
of weighted variances set up with the theoretical and experimental results for cell
surviving fractions. All the experimental data points for S(exp)

F (D) are used in these
minimizations. The results for the Fe-plot are obtained from the deduced radiosen-
sitivities −(1/D) ln S(exp)

F (D),−(1/D) ln S(LQ)
F (D) and −(1/D) ln S(PLQ)

F (D). The
findings are displayed using the linear axis for dose D as the abscissa, whereas the

1 For our earlier applications of the PLQ model to different cell lines, see Refs. [12–15] and [22].
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Fig. 1 Cell surviving fractions SF(D) as a function of radiation dose D in Gy. Experimental data (symbols)
[23]: the mean clonogenic surviving fractions SF(D) for Chinese hamster V79 cells irradiated by 250 kVp
X-rays. Theories; full line: Padé linear-quadratic (PLQ) model and dashed line: linear-quadratic (LQ)
model.

ordinates are either logarithmic or linear for the surviving SF(D) or the full effect
−(1/D) ln SF(D), respectively.

It can be seen from Figs. 1 and 2 that throughout the entire dose range (0–18 Gy)
the cell surviving fractions S(PLQ)

F (D) and the Fe-plot −(1/D) ln S(PLQ)
F (D) from

the PLQ model are in excellent agreement with the corresponding experimental data
S(exp)

F (D) and −(1/D) ln S(exp)

F (D), respectively. By contrast, as evidenced in Fig. 1,

the LQ model for cell surviving fractions S(LQ)
F (D) is valid only at low-to-intermediate
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Fig. 2 The Full-effect (Fe) plot from the cell surviving fractions as given by the product of the reciprocal
dose D−1 and the negative natural logarithm of SF(D) on the ordinate versus D as the abscissa: Fe(D) ≡
−(1/D) ln(SF) = R(D). Experimental data (symbols) [23]: the mean clonogenic surviving fractions SF(D)

for Chinese hamster V79 cells irradiated by 250 kVp X-rays. Theories; solid curve: Padé linear quadratic
model and dashed curve: linear quadratic model (the straight line α + βD).

dose D ≤ 10 Gy. However, at higher doses shown in Fig. 1, the LQ model severely
underestimates the experimental data that exhibit a characteristic exponential decline
of the type S(exp)

F (D) ∼ e−D/D0 at very large values of D in sharp disagreement with

the LQ-conceived Gaussian high-dose asymptote S(LQ)
F (D) ∼ e−βD2

.
This breakdown of the LQ model is most prominently evidenced in the Fe-plot

depicted on Fig. 2. Here, the reactivity or radiosensitivity R(LQ)(D) = Fe(LQ)(D) =
−(1/D) ln S(LQ)

F (D) from the LQ model predicts a straight line α+βD. Geometrically
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interpreted, the parameter α is the intercept of the latter straight line with the ordinate,
whereas β is the slope of the same line α + βD. Such a straight-line behavior of
Fe(LQ)(D) indicates that the full effect will continuously increase without limit by
augmentation of dose D. Any departure of experimental data from this pattern would
imply the inadequacy of the LQ model. This is precisely what is observed on Fig. 2,
where the measured findings for Fe(exp)(D) = −(1/D) ln S(exp)

F (D) strongly deviate
from the LQ-based straight line Fe(LQ)(D) = α +βD both at lower and higher doses.
Simultaneously, it is clear from Fig. 2 that the pertinent prediction of the PLQ model
for the Fe-plot via R(PLQ)(D) = Fe(PLQ)(D) = −(1/D) ln S(PLQ)

F (D) is in excellent
accord with the associated experimental data Fe(exp)(D) at all doses. As opposed to
the straight line Fe(LQ)(D) = α +βD in the LQ model, the Fe-plot in the PLQ model
is given by the rectangular hyperbola Fe(PLQ)(D) = (α+βD)/(1+γ D), which fully
describes the experimental data Fe(exp)(D), as per Fig. 2. While the LQ-based Fe-plot
for the relative radiosensitivity is an ever increasing function with augmented dose,
Fe(LQ)(D) = α +βD, the PLQ-designed counterpart, Fe(PLQ)(D) = (α +βD)/(1 +
γ D) saturates at asymptotically large D by attaining a constant value β/γ , which can
be identified with the reciprocal of the mean lethal dose D0.

The current practice in dose-planning system is to use the LQ model in determining
the biologically effective dose, BED(LQ) = 1 + (β/α)D. The BED is most useful
in fractionation radiotherapy. In particular, the concept of the BED is envisaged to
be of critical importance for prescribing the dose per fraction for non-conventional
fractionations (larger doses per fraction) by extrapolating the abundant experience
from conventional fractionation (smaller doses per fraction). In order to attain this
planned goal, the BED must be consistently evaluated from one set of parameters
that are material constants throughout the investigated dose-range. This is not the
case with the LQ model, as can be inferred from Fig. 1. Namely, from the lack of
agreement seen in Fig. 1 between S(LQ)

F (D) and S(exp)

F (D) beyond 10 Gy, it follows
that BED(LQ) = 1 + (β/α)D, based on only one fixed value of the ratio β/α, is
inapplicable to the entire dose-range of interest, D ∈ [0, 18]Gy. In other words, to
obtain the BED which closely conforms to the experimental data at all doses from 0 to
18 Gy, the interval D ∈ [0, 18]Gy could be split into 2 subranges D ∈ [0, 10]Gy and
D ∈ [10, 18]Gy. This should subsequently be followed by 2 separate computations
of the variance from S(LQ)

F (D) and S(exp)

F (D). The ensuing results might eventually
give a reasonable agreement between the surviving fractions in the LQ model and the
corresponding experimental data, with the price of having 2 sets of the quotients β/α,
one for D ∈ [0, 10] and the other for D ∈ [10, 18]. Such a dose-range dependence of
the ratio β/α, automatically yields the associated dose-range dependence of the LQ-
evaluated biologically effective dose, BED(LQ) = 1 + (β/α)D. This latter dose-range
dependence precludes any meaningful inter-comparisons of different fractionation
regimens (e.g. small versus large doses per fraction) and, in fact, undermines the true
concept as well as usefulness of the biologically effective dose.

The concept of the BED could be restored by having a single set of parameters
that are dose-range independent, as is indeed the case in the PLQ model, BED(PLQ) =
(1+βD/α)/(1+γ D). In this latter expression for the BED, the parameters α, β and γ

are the same for the whole dose-range D ∈ [0, 18] Gy. This is possible because these
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parameters are reconstructed by the PLQ model in a single least-square minimization
of the variance for S(PLQ)

F (D) and S(exp)

F (D) at all doses without dividing the whole
dose-interval D ∈ [0, 18] into 2 segments D ∈ [0, 10] and D ∈ [10, 18]. Hence,
rather than exclusively relying upon the LQ-based BED, as is currently the case, the
biologically effective dose in the PLQ model should be used in dose planning systems
as well as in inter-comparisons among different fractionation schedules in clinical
practice. This suggested replacement of BED(LQ) by BED(PLQ) entails an additional
parameter γ in the PLQ-envisaged BED, (1 + βD/α)/(1 + γ D). However, this is
only a minor inconvenience, since the additional parameter γ is given by βD0, where
the mean lethal dose D0 can readily be extracted by hand from the slope k0 = 1/D0 of
the straight line for the terminal part of the analyzed experimental cell survival curve
in a semi-logarithmic plot.

7 Conclusion

The main targets for irradiation in the human body are DNA molecules from the
treated tissue. The heterogeneity of tumors implies that normal and cancerous cells
are highly intertwined. In order to allow repair of irradiated healthy cells, radiation
is usually administered in relatively small fractions of 2 Gy/day during 5 days/week
within 1 month. This is known as the conventional fractionated radiotherapy. It has been
conjectured that the ultimate success of radiotherapy depends critically on the ability
to comprehend the mechanisms of cell repair. Therefore, alongside the necessary
dosimetric evaluations, dose planning systems must also include biophysical modeling
to assess and predict the actual extent of cell survival and repair after irradiation by
any particle or ray beams used in radiotherapy.

One of the fastest expanding non-conventional fractionated radiotherapeutic modal-
ities is stereotactic radiosurgery which is carried out by the gamma knife systems with
fewer, but considerably larger and highly focused doses per fraction delivered within
a much shorter time. It is here that radiobiological models with the correct high-dose
behavior are of utmost importance. In order to optimize non-conventional fraction-
ation, in the sense of determining the proper dose per fraction, clinical oncologists
rely upon the abundant experience with the conventional fractionated radiotherapy.
However, all the dose planning systems for the conventional radiotherapy are based
upon the biologically effective dose (BED) estimated by the LQ model. Since the
LQ model is a low-dose approximation, the BED cannot be determined uniformly
for all the doses of interest. In practice, the LQ-based BED is obtained in a sequen-
tial manner by fitting this model to the experimental data in a limited dose-range at
a time. To cover all the investigated doses, the BED is computed thereby for several
dose intervals. Such segmented fittings yield several sets of radiobiological parameters
with the consequence that the resulting BED becomes dose-range dependent. This, in
turn, precludes a meaningful comparison between fractions for the conventional and
non-conventional fractionated radiotherapeutic modalities. Hence the need for more
advanced biophysical descriptions that would go beyond the LQ model and apply to
any dose. This could make the BED dose-range independent and, thus, enable reliable
comparisons between conventional and non-conventional radiotherapy.
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Therefore, the main focus of this study is in establishing a mechanistically-based
universally applicable radiobiological model for cell survival after exposure to radia-
tion. Here, universality means that the same model remains equally valid at all absorbed
doses D, ranging from low through intermediate to high energy depositions. Starting
from the most general principles that an adequate repair-based model must fulfill,
we have derived the PLQ, or equivalently, the DMM model for cell surviving frac-
tions in the form of a rational function in the argument of the Poissonian exponential:
S(PLQ)

F (D) = exp [−(αD + βD2)/(1 + γ D)]. The main features of this new radio-
biological model can be summarized as follows:

(i) An appealing and multifaceted mechanistic description with a direct relation to
Michaelis–Menten kinetics of enzyme catalysis for repair of radiation-induced
lesions,

(ii) The three positive-definite parameters {α, β, γ } with their clear biological mean-
ing and clinical interpretation,

(iii) A straightforward connection with the well-known two component model
from the MT-SH formalism with the familiar parameters {k1, k0, n} =
{initial slope, final slope,extrapolation number} and the underlying mean lethal
dose D0 as D0 = 1/k0 ,

(iv) The non-zero constants for the initial and final slopes of the cell surviving fraction,
(v) A smooth switch from the Gaussian term exp (−βD2) in the LQ model

S(LQ)
F (D) = exp (−αD − βD2) to the purely exponential asymptote

exp (−βD/γ ) = exp (−D/D0) in the PLQ model at high doses, in accordance
with the same pattern S(exp)

F (D) ∼ exp (−D/D0) of the terminal part of most of
the experimentally measured dose-effect curves, and

(vi) The dose-range independence of the BED stemming from a single set of para-
meters {α, β, γ } for any given experimentally measured cell surviving fraction
S(exp)

F (D).

In several recent applications, including the present work, it has been found that the
PLQ model systematically outperforms the LQ model by exhibiting excellent agree-
ment with the available experimental data on cell surviving fractions and the related
full-effect plots at all doses. This finding alongside the expounded mechanistic basis
and the ease in computations should constitute an incentive for using the PLQ model
in clinical dose-planning systems with the purpose of optimizing both conventional
and non-conventional fractionated radiotherapy.
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