

The ROYAL MARSDEN

Life demands excellence

How much can RT benefit from biomarkers of normal tissue response to RT?

Navita Somaiah, MD, FRCR, DPhil Team leader, Translational Breast Radiobiology, ICR Honorary Consultant Clinical Oncologist, RM

Workshop: Individual Response to Ionising Radiation, Stockholm 1-2 Sep 2022

Personalised radiotherapy

Normal tissue toxicity

Tumour control

Tumour microenvironment

Vascular network

Why important?

- 50% of cancer patients receive RT in the curative setting
- Upto 20% experience late RT toxicity affecting QOL
- Most sensitive minority limit dose and cure prospects of the majority

Ultimate aim...

Technological developments in RT delivery 2D 3D CRT IMRT IGRT SBRT MRLinac Protons

Understanding NT biology

Improved therapeutic ratio in patients

Which side effects are we particularly worried about?

Before RT

After RT

- Self-renewal tissues, rapidly proliferating
- Symptoms during/just after RT and resolve within weeks
- Usually not dose-limiting

Late reacting normal tissues

- Dormant/slowly proliferating
- Symptoms present months to years after RT
- Can be progressive
- Dose-limiting

Clinical Phenotypes: Several Pathologies

Hardness under skin (fibrosis?)

Telangiectasia

Breast atrophy & distortion

Traditional Model of Fractionation

Response

2

Late adverse effects

 Very sensitive to changes in daily dose

Tumour control Acute RT effects Less sensitive to changes in daily dose

Size of daily dose (Gy) – fraction size

Δ

INSIGHT Study

Identification of *early* molecular & cellular processes predisposing to late normal tissue toxicity

Aim:

To correlate residual double strand breaks (DSB) 24h after 4Gy test doses to skin in vivo & to lymphocytes in vitro with late toxicity

Collaboration with John Yarnold, Kai Rothkamm, Carsten Herskind, Melvin Chua

INSIGHT – novel methodology

Breast cancer patients – 15 cases (RS), 15 controls (RR)

- Multiple skin punch biopsies ۲
- Blood sample pre-RT irradiated ex vivo ۲

Results – Residual DSB in vivo

Residual DSB in fibroblasts significantly increased in most sensitive cases

Basal keratinocytes

Arrows=severe cases

Somaiah et al, R&0 2016 Nuta, Somaiah et al, Cancer Letters 2016

Results – Residual DSB foci in lymphocytes

Statistically significant difference between cases and controls

Chua, Somaiah et al R&O Apr 2011 Chua, Somaiah et al R&O June 2011

Results – Chromosomal aberrations in lymphocytes

Chua, Somaiah et al R&O June 2011

Summary from INSIGHT

Main strengths

- Controlling for effects of tissue microenvironment on cell responses
- Recruitment of patients under prospective follow-up
- Able to associate the radiation response of fibroblasts & lymphocytes with late toxicity in most radiosensitive patients

Clinical translatability???

Micronucleus assay

> Dicentric chromosome assay

Residual yH2AX foci

ATM nuclear shuttling assay

RILA assay

Genomic Proteomic Transcriptomic signatures

Circadian rythm

Radiomics

Micronucleus assay

Which assay?? Which biomarker??

Holy grail or not??

ATM nuclear shuttling assay

Circaulan Tythm

RILA assay

Radiomics

The Problem

SO FAR

- Dosimetry or biology alone cannot explain toxicity
- Recognise that pathogenesis of RT-induced toxicity is complex & multi-factorial
- Limited combined analyses of clinical, dosimetric, genetic factors

CHALLENGES

- Rarity of large studies with complete, prospectively collected data
- Difficulty to integrate, analyse & interpret large, multi-modal data

Can Big Data/Al Analysis help?

Multidisciplinary Team- Big RT

CHHiP: Prostate Hypofractionation Trial

Data Processing: Inclusion Criteria

Focus on Rectal Bleeding endpoint

928 have all CRO, dosimetry, genetic data - included in the combined analysis

Patient labelled as having rectal bleeding toxicity if: Grade \geq 2 at \geq 12 months

7.8% incidence

Analysis: Features Selected

Clinical (12 variables)

Age, hypertension, pelvic surgery, diabetes, IBD, previous TURP, risk group, Gleason score, pre- and post-hormone PSA, RT dose

Genetic

300k–500k genetic variants (SNPs) from RAPPER & PRACTICAL consortia:

- ~9 million after imputation
- ~100-500 pre-selected

Analysis

Results: Combined multiparametric, multimodal data better identifies patients with long-term toxicity

So far...

- Developed a bespoke integrative model to *jointly* analyse *all* datasets
- Allows integration of other data types eg: radiomics
- Identified some novel markers combining variables from all datasets
- Predictive power typically increased by combining datasets

Next steps

Validation in progress with independent data set

If we find a reproducible/reliable/validated BM that can accurately predict individual NT toxicity can RT be beneficially modified?

Low risk disease, Radio-resistant NT

Current standard of care OK?

RT dose fractionation already modelled on keeping NT toxicity low

Low risk disease, Radio-sensitive NT

Avoidance of RT all-together (eg: active surveillance, surgery, hormone therapy)

If no oncological alternative to RT

- Stringent dose constraints for NT (accept tumour compromise)
- Dose de-escalation strategies
- Use of Image guided RT/Adaptive RT strategies to keep NT dose to a minimum

Partial breast RT in low risk -IMPORT LOW

Group 1

Control Group: Whole breast

Test Groups: Partial breast

15 Fractions

15 Fractions

15 Fractions

AIM: develop low cost accurate biomarkers to test omission of radiotherapy in very low risk population

No radiotherapy side effects for very low risk patients Save NHS >£12M/year treatment costs

Courtesy Charlotte Coles

High risk disease, Radio-resistant NT

- Relax dose constraints to NT in favour of tumour coverage
- Dose escalation strategies
- Hypofractionation strategies with a view to accelerated RT
- Combination strategies with radiosensitisers chemotherapy/novel drugs

Dose escalation to tumour bed in high-risk breast patients –IMPORT HIGH

Courtesy Charlotte Coles

 \bigcirc

High risk disease, Radio-sensitive NT

- Very stringent dose constraints for NT
- Favour conventional/hyper-fractionation instead of hypofractionation
- IGRT/ART/MR-Linac/Protons/Gating/Spacers strategies to minimise NT dose
- More closer follow-up of these patients for early interventions for NT toxicity management
- Use of novel radio-protectors

High risk breast disease Internal mammary chain RT

Ranger et al Clin Oncol (R Coll Radiol) 2018

Proton beAm theRApy in patients with Breast cancer: evaluating early and Late Effects

Aim: To show that PBT reduces predicted risk of late serious heart toxicity with no increase in other shorter-term side effects

Objectives:

- •Change international practice for breast PBT early with a primary outcome analysis at 2 years' follow-up
- •Improve understanding of PBT biological models via a mechanistic study with potential benefit for all cancer patients needing PBT

Co-primary endpoints:

- Mean heart dose
- Patient-reported normal tissue toxicity in the breast (EORTC QLQ-BR23 breast symptoms score) at 2 years

anticipated mean heart dose & cardiac risk factors **Consent to randomisation** Baseline assessments (including CTCAE, RTOG, PRO questionnaire) RANDOMISATION 1:1 192 patients Proton Beam Therapy (PBT) vs Tailored photon RT (IMAT ideally in DIBH) PBT *: The Christie or UCLH Tailored photon RT *: Randomising 40Gy (RBE) in 15Fr (3 weeks) centre 40Gy (RBE) in 15Fr (3 weeks) *SIB of 48 Gy/15 Fr to tumour bed allowed; declare before randomisation On treatment assessments (acute toxicity, QoL): CTCAE, PRO questionnaires (weekly) Post treatment assessments (acute toxicity, QoL): CTCAE (2 weeks after, then weekly until acute local symptoms ≤ 1); PRO (weekly until week 12) Follow-up assessments: RTOG (3, 6, 12m), PRO (6, 12, 24, 60 m), clinical assessments (12, 24, 36, 48, 60m), CT scan & biochemistry profile (24m)

Patients undergoing adjuvant radiotherapy for breast cancer with ~2% or higher estimated absolute lifetime risk of RT-induced late major cardiac event based on

Chief Investigator – Prof Charlotte Coles Technical RT and Mechanistic Study Lead – Dr Anna Kirby

Who is eligible?

- For inclusion in PARABLE the estimated lifetime risk of radiation-induced late cardiac toxicity for a patient should be around 2% or greater
- This is calculated using mean heart dose (MHD), age and cardiovascular risk factors as per table below:

Age (years)	Mean heart dose (Gy) needed for	
at study registration	≥2% risk of radiation-related heart disease by aged 80 years	
	No Cardiac Risk Factor	At Least One Cardiac Risk Factor*
≤44¶	≥4Gy	≥2.5Gy
45-54	≥6 Gy#	≥4 Gy
55-64	≥6 Gy#	≥4.5 Gy
65+	≥6 Gy#	≥5.5 Gy

[¶] Incorporating data for women <40 years (Henson et al).* Risk factors: pre-existing cardiac or circulatory disease, diabetes, COPD, BMI >30 kg/m², smoking (long term continuous within previous year). [#] Clinically acceptable threshold for MHD based on RCR UK consensus

What about FLASH-RT?

Normal tissue sparing; similar tumour control

Bourhis, Vozenin et al 2019 R&O

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

1a : Day 0

1b:3 weeks

Original Article

Treatment of a first patient with FLASH-radiotherapy

Jean Bourhis ^{a,b,*}, Wendy Jeanneret Sozzi ^a, Patrik Gonçalves Jorge ^{a,b,c}, Olivier Gaide ^d, Claude Fréderic Duclos ^a, David Patin ^a, Mahmut Ozsahin ^a, François Bochud ^c, Jean-François Germonc Raphaël Moeckli ^{c,1}, Marie-Catherine Vozenin ^{a,b,1}

1c:5 months

PHASER Linac Stanford's clinical prototype

Early (non-RT) intervention strategies in RS patients

- Smoking cessation
- Modifying gut biome
- Radioprotectors- Amifostine, Antioxidants (Vit E, Pentoxyphylline)
- Circadian rhythm- timing of RT delivery
- Hyperbaric Oxygen

Ultimately it is about informed patient discussions/shared decision making

Radiother Oncol. 2016 December; 121(3): 440-446. doi:10.1016/j.radonc.2016.11.003.

Optimal design and patient selection for interventional trials using radiogenomic biomarkers: A REQUITE and Radiogenomics consortium statement

Dirk De Ruysscher^{1,2}, Gilles Defraene², Bram L.T. Ramaekers³, Philippe Lambin¹, Erik Briers⁴, Hilary Stobart⁵, Tim Ward⁶, Søren M Bentzen⁷, Tjeerd Van Staa⁸, David Azria⁹, Barry Rosenstein¹⁰, Sarah Kerns¹¹, and Catharine West¹² KEEP CALM AND MAKE INFORMED DECISIONS