

Radiog	enomic Onco Time t	S Cons Array-500 to grade 2/	Ortium K, ~7 millio '3 toxicity,	Prosta n SNPs n=3,874	te GW	AS	
	RAPPER n=2,010	RADIOGEN n=658	GenePARE n=495	UGhent n=311	CCI-BT n=252	CCI-EBRT n=148	
Median age (yr)	68	72	65	65	65	68	
Intermed/high risk	60%	81%	53%	74%	38%	92%	
Prior surgery	0%	20%	0%	31%	0%	0%	
Hormones	100%	70%	51%	64%	22%	49%	
Median BED (Gy)	120	123	204	136	158	153	
CCI=Cross Cancer Inst	itute; BED=b Sa l	iological effe rah Kerns	ective dose et al 2020	JNCI			

	Th	ree new SN	Ps identifie	ed	
SNP	MAF	Toxicity	HR (95% CI)	Р	BFDP
rs17055178	0.09	Rectal bleeding	1.95 (1.58, 2.43)	6.2x10 ⁻¹⁰	0.09%
rs10969913	0.05	Decreased stream	3.92 (2.50, 5.83)	2.9x10 ⁻¹⁰	1.07%
rs11122573	0.06	Haematuria	1.92 (1.53, 2.42)	1.8x10 ⁻⁸	1.96%
MAF = minor allel	e frequenc	cy; BFDP = Bayesian false disc	covery probability		
		Rs10969913 validated i	n a Japanese cohort		
		Kerns <i>et al</i> 2	020 JNCI		
Ongo	oing ana	lyses: includes REQUIT	E cohort and multi-	ethnicities	R

Identifies credible causal variants (CCVs)

- CCVs associated with regulation of AGT
- AGT encoding angiotensinogen converted to angiotensin II by angiotensin converting enzyme (ACE)
- Angiotensin maintains blood pressure and fluid balances - too much causes vasoconstriction and increases in blood pressure
- Angiotensin signaling may influence radiationinduced blood vessel wall injury and interstitial fibrosis

Fine mapping identifies another variant, less common but higher HR 4.43 (95% Cl 2.35 - 8.33)

GWAS to mitigate risk of toxicity

- Tested the hypothesis that patients taking angiotensin converting enzyme inhibitors (ACEi) have a reduced risk of late hematuria
- Two observational cohorts: Rochester (n=256) and REQUITE (n=1,437)
- Patients assessed pre-radiotherapy and prospectively for up to four years
- Cumulative probability of haematuria estimated using multivariable relative risk models to assess the effect of ACEi on time to hematuria adjusting for clinical factors
- A polygenic risk score (PRS) for blood pressure was tested for association with hematuria in REQUITE and in the Radiogenomics Consortium GWAS

ACEi use during radiotherapy protects against risk of late haematuria (n=1,372)

	Characteristic	Adjusted HR (95% CI)	P-value
ACEi use during radiotherapy	No	Ref.	-
	Yes	0.51 (0.28 to 0.94)	0.030
Heart disease	No	Ref.	-
	Yes	0.32 (0.15 to 0.67)	0.003
Prior transurethral resection	None	Ref.	-
	TURB only	4.03 (0.96 to 17.0)	0.058
	TURP only	4.05 (2.28 to 7.18)	<0.001
	TURP and TURB	5.17 (1.23 to 21.8)	0.025
Pelvic radiotherapy	No	Ref.	-
	Yes	0.55 (0.32 to 0.96)	0.037
Bladder V70Gy, percent		1.13 (1.04 to 1.22)	0.004
	Kerns <i>et</i> (al 2022	

Polygenic risk score for blood pressure predicts for risk of hypertension but not radiotherapy toxicity

	Hypertension (N = 5,288)	Haematuria (N = 5,126)	Rectal bleeding (N = 4,592)
Odds radio	1.38	0.96	1.03
95% Cl	1.31 to 1.46	0.87 to 1.06	0.95 to 1.11
P-value	<0.001	0.41	0.51

The protective effect of ACEi use is not related to its effect on reducing blood pressure

- First study showing a radioprotective effect of ACEi on bladder
- Mechanistic studies needed to understand how targeting the angiotensin pathway protects the bladder

Kerns et al 2022

Nadest et al. Journal of Translational Medicine (2021) 19:481 https://doi.org/10.1166/s12967-021-03145-1	Journal of Translational Medicine	ç www.nature.com/bjc	British Journal of Cancer
RESEARCH A two-stage genome-wide of radiation-induced acute and neck cancer Ehaz Naderi ³⁻⁰ , Anne Petra Gerarda Crijns ¹ , Roel Johannes H Johanna Gertruida Maria van den Hoek ¹ , Hendrika Marike Bo	Open Access association study toxicity in head Henricus Marinus Steenbakkers ¹ , ezen ² , Behrooz Zud Alaudeh ²¹ and	ARTICLE OPEN Genetics and Genomics A genome-wide association toxicity in head and neck c susceptibility locus associat Line M.H. Solado (¹²⁷ , Bha Niderl ¹⁴ , Linar Schalle ¹⁶ Goup of the Baldgenomics Consortium, The Danish He Merini L. C. Chaud ¹⁶ , Jahares A. Langerd ¹⁶ , lethood	Durk to cannot study of radiotherapy induced ancer patients identifies a ed with mucositis Lala Dolling ¹ , Craig Luccain ¹ , Alson M. Durning ¹ , The Head and Neck ad and Neck Cancer Group DMAMACAP, Engs H. W. Orng ² , . Xladdh ⁽¹⁾ , Mr. Moreyand ⁽²⁾ , Jappe Gray Liften ^{5,1} ;

In 1,298 patients, a region on 5q21.3 contained 16 SNPs was significant for xerostomia (p≤3.78× 10⁻⁹). SNPs located within three genes (EFNA5, FBXL17, FER). In-silico functional analysis showed the genes may be involved in DNA damage response and co-expressed in minor salivary glands.

Patients with an increased polygenic risk of cancer have no increased risk of toxicity (STATlate)

Cancer	Univariable analysis	5	Multivariable analysis		
	Beta (95%CI)	Р	Beta (95%CI)	Р	
Breast	PRS:-0.0002	0 02	PRS:-0.0005	0.67	
n=3,133	(-0.0021, 0.0017)	0.65	(-0.0026, 0.0016)	0.07	
	PRS: -0.0003	0.70	PRS: -0.0002	0 00	
Prostate	(-0.0018, 0.0012)	0.70	(-0.0016, 0.0013)	0.82	
n=4,861	wPRS: -0.0074	0.21	wPRS: -0.0060	0.20	
	(-0.0220, 0.0071)	0.51	(-0.0203, 0.0083)	0.56	
	PRS: -0.0123	0.05	PRS: -0.0139	0.02	
Lung	(-0.0245, -0.0001)	0.05	(-0.0259, -0.002)	0.02	
n=621	wPRS: -0.0739	0.04	wPRS: -0.0847	0.02	
	(-0.1453, -0.0025)	0.04	(-0.1544, -0.015)	0.02	

Breast covariates: breast volume, age, cardiovascular disease, smoker, tumour weight, cosmesis after surgery, postoperative haematoma or infection, breast volume receiving >107% prescribed dose, radiotherapy boost, acute toxicity, tamoxifen and chemotherapy use.

Prostate covariates: age, BED, use of androgen deprivation therapy, prior prostatectomy

Lung: study, gender, age, smoker, concurrent chemotherapy, radiotherapy technique, FEV1, V20 lung and V35 esophagus Int J Radiat Oncol Biol Phys. 2022 Nov 1;114(3):494-501.

Treatment time and circadian genotype interact to influence the severity of radiotherapy side-effects

- Circadian rhythm affects biological processes including response to cancer treatment
- Evidence conflicts on whether treatment time affects risk of radiotherapy side-effects
- Johnson, Talbot *et al* showed an interactive effect of time and genotype of circadian rhythm genes on late toxicity after breast radiotherapy.

Treatment time and circadian genotype interact to influence the severity of radiotherapy side-effects

- Clinical and genotype data from 1690 REQUITE breast cancer patients with erythema (acute) and breast atrophy (two years post-radiotherapy) as primary endpoints.
- Local date times for each fraction were converted into solar times as continuous predictors.
- Genetic chronotype markers were included in logistic regressions to identify predictors of toxicity.
- Significant predictors for erythema included BMI, radiation dose and *PER3* genotype.
- Effect of treatment time on acute toxicity was inconclusive, with no interaction between time and genotype.

Webb, Talbot et al, EBioMedicine, in press

Treatment time and circadian genotype interact to influence the severity of radiotherapy side-effects

- BMI, radiation dose, surgery type, mean treatment time and SNPs in CLOCK (rs1801260), PER3 (rs2087947) and RASD1 (rs11545787) genes predicted for breast atrophy (p<0.05).
- Significant interaction between time and the genotypes of the circadian rhythm genes (p=0.005-0.02), with peak time for toxicity determined by genotype.
- Late atrophy can be mitigated by selecting optimal treatment time according to genotypes of circadian genes.
- *PER3* rs2087947C/C genotypes should be treated in the morning; T/T in the afternoon).
- Estimated triple-homozygous patients (14%) reduce their chance of atrophy from 70% to 33% by treating in the morning as opposed to mid-afternoon.

Webb, Talbot et al, EBioMedicine, in press

10

	Risk predic	tion modelling
Finding r	new ways of adding ge	enetic information to risk modelling
	Urinary Frequency ≥grade 2	Radiotherapy and Oncology 19 (2011) 241-248 Contents lists available at ScienceDirect Radiotherapy and Oncology
AUC PRS	0.65	ELSEVIER journal homepage: www.thegreenjournal.com Original Article
AUC PRSi	0.78	Development of a method for generating SNP interaction-aware polygenic risk scores for radiotherapy toxicity
1,401 REQ43 publish	UITE prostate patients ed SNPs	Nicola Kares Franco , Micreia Lariotta Massi , Francesca leva ^{-soc} , Andrea Manzoni ⁺ , Anna Maria Paganoni ⁺ ab. ⁻ Paolo Zunio ⁺ , Liv Veldenam ² , Fret Ost ⁻⁶ , Valèrie Fonteyne ⁴ , Christopher J. Talbol ⁺ , Tim Rattay ⁺ , Adam Webb ⁺ , Kerstie Johnson ⁺ , Maarten Lambrecht ⁻⁶ , Karin Hausterman ⁵ , Gerte De Meerleer ⁺ , Dirk de Ruysscher ¹⁰ , Jen Namset ⁺ , Ever Van Limbergen ^{10,4} , Ananya Choudhury ⁺ , Rebecca M. Elliott ⁺ , Ilena Sperk ⁺ , Marion R. Veldwijk ⁺ , Carsten Herskind ⁺ , Barbara Avuzt ⁺ , Barbara Avuzt ⁺ , Reicrado Valdag ^{-10,60} , Dirk de Ruyssch Arata ⁺ , Marie-Pierre Farcy-Jacquet ⁺ , Muriel Brengues ⁺ , Barry S. Rosenstein ^{-4,7} , Richard G. Stock ⁺ , Ana Vega ^{+3,60} , Miguel E. Aguado-Barret ⁺ , Plomin Sosa-Fajardo ^{10,5,4} , Alison M. Dunning ⁺ , Laura Fachal ^{10,45} , Sarah L. Kems ⁻⁷ , Debbie Payne ⁺ , Jenny Chang-Claude ^{46,40,40} , Petra Seibold ^{44,6} , Catharine M.L. West ¹² , Tiziana Raneati ^{10,4} , REQUITE Consortium ²
PRS = sum	of risk alleles	

Summary

- Genetic will contribute to an individual patient's risk of toxicity
- GWAS can identify common genetic variants that increase risk of toxicity
- GWAS data can be used to investigate polygenic risk scores for other traits
- Future toxicity risk prediction is likely to involve models include dosimetric, clinical and genetic information
- There are likely to be multiple models for multiple endpoints

