Workshop on Current Challenges of Patient Re-irradiation Stockholm September 2018

Re-irradiation is now a real option – but how do we take it forward?

B Jones and J Hopewell

Bleddyn Jones MD FRCR

GRAY INSTITUTE FOR RADIATION ONCOLOGY & BIOLOGY Medical Research Council

Introduction

- Re-treatment results can sometimes be as good as first line chemotherapy!
- Brachytherapy and Particle therapy may be particularly suited for re-treatmentsdue to reduced irradiated volume, either as first or second treatment.
- Retreatment may refer not only to tumour recurrences but to tumours arising in a previously irradiated anatomical site, e.g. pelvis, thorax, head and neck.

Retreatment of CNS tumours is clinically useful in selected patients, although infrequently done in some hospitals [Amichetti et al 2011]

- Younger patients most often retreated, usually small low grade glioma recurrences 3-8 years after first radiotherapy
- Treatment can be considered palliative
- Duration of second remission can exceed that of first remission
- 5 year survivors reported in many series
- Cytoxic chemotherapy often given after first relapse or as part of management.

Importance of Patient Selection

- Risks of re-treatment should be lower than those of any other treatment policy.
- other treatment contraindicated
- Patient unsuitability for standard approaches
- Reasonable expectation of survival greater than 1 year.
- No significant clinical or radiological signs of late effects following first treatment course
- Formal consent procedures

Evidence for time dependent "Recovery"

- Many experiments in small animals...rats, mice, with short retreatment time interval possibilities
- Only one data set in primates (K. Ang et al 2001)
- Human evidence from radiotherapy

Estimations of re-treatment dose fractionation schedules - references

Changes in the retreatment radiation tolerance of the spinal cord with time after the initial treatment.

Int J Radiation Biology 2018, Jun;94(6):515-531. TE Woolley, J Belmonte-Beitia, GF Calvo, JW Hopewell, EA Gaffney and B Jones. Based on two earlier articles:

Jones B & Grant W. Retreatment of Central Nervous System tumours. Clinical Oncology, 26, 407-418, 2014.

Jones B & Hopewell JH. Alternative models for estimating the radiotherapy retreatment dose for the spinal cord. Int J Radiat Biol. 2014 Sep;90(9):731-41.

Many **clinical reviews** of re-treatment usefulness e.g. Clinical Oncology (R Coll Radiol), special edition 2018, e.g. <u>Re-irradiation in the **Brain**: Primary Gliomas.</u> Ho ALK, Jena R. Clin Oncol 2018 Feb;30(2):124-136 Late reacting tissues (e.g. CNS with α/β=2 Gy) show greatest change in photon dose with dose per fraction, which will influence RBE numerator dose, so they have largest RBE`s. LQ model well isoeffect curve predicts

Dose-related incidence of radiation myelopathy in the Rhesus monkey: single and a repeated course irradiation of Ang et al 2001, compiled by John Hopewell.

2001

Percentage BED-Tolerance

- First Treatment $BED_1 = \frac{BED_{init}}{BED_{risk\%}} \times 100\%,$
- Second Treatment $BED_2 = \frac{BED_{retreat}}{BED_{risk\%}} \times 100\%,$

The risk is set at 1% (default), but may be changed according to clinical situation

Biological Effective Dose (BED/BEDtol)% plots. Existing *in vivo* data above critical <u>no recovery line</u>

Clinical data sets (black points: Wong et al - myelitis; grey points Nieder et al – No myelitis, All data in agreement with model 1)

Re-treatment iso-effect curves grow *upwards* from the black hatched line of no recovery, with increasing time

Some special features

- Model incorporates all known data for white matter necrosis of spinal cord tissue in animals and also uses human myelitis dose-response curve data.
- Recovery rate depends on initial exposure and is rapid only after an initial priming BED1% of 35%.
- Flexibility for changing risk level due to adverse clinical factors

Original equation

•
$$BED_2 = 100 \left(1 - \frac{BED_1}{100}\right)^{\frac{1}{r(t)+1}}$$
,

To extend for allowance of Lag time of 70 days and delayed recovery for 'lower BED' initial courses

New equation

•
$$BED_2 = 100\left(1 - \frac{BED_1}{100}\right)\left[1 + \left(\left(1 - \frac{BED_1}{100}\right)^{\frac{-r(t)}{r(t)+1}} - 1\right)f(BED_1, r(t))\right]$$

Where

$$f(BED_1, r(t)) = \frac{1}{2} \left[1 + \tanh \left[s_0 \left(BED_1 - \frac{\overline{BED}}{1 + s_1 \cdot r(t)} \right) \right] \right]$$

Then, use Newton-Raphson procedure to determine r(t) $r(t) = \begin{cases} 0, & t \in [0, t_{IRO}] \\ a + bt + ct^2 + dt^3, & t \in [t_{IRO}, 3] \end{cases}$

Fit of Recovery 'time function' r(t) to data of Ang etal.

Main graph: fit for myelitis incidence of 1%. Inset graph: shows little change in r(t) between myelitis incidence of 1% and 0.01%.

Human and rhesus monkey data from Ang and Hopewell

Introducing greater degrees of 'conservatism', for patients where tolerance is reduced (surgery chemotherapy, extremes of age, vasculopathies).

The more conservative approach: -10% shifts for dashed lines

The GUI

- Input parameter......BED₁% is the
 (Given BED/Tolerance BED)%, also the risk level (or BED tolerance) and elapsed time.
- Output parameter is BED₂%, which is (allowable BED/Tolerance BED)%, and dose per fraction in a user set number of fractions.

Graphical User Interface (GUI) can be downloaded to facilitate estimates of **allowable** dose per fraction and number of fractions for the re-treatment. This should be regarded as a boundary value.

Allows changes in tolerance due to medical factors using The percentage conservative factor: 0 to 20% shifts in dose response curves to the left.

For a myelitis risk of 0.1% (1 in 1000)

Each curve shows $BED_2(\%)$ increasing with time between treatments for 4, 5 and 6 months followed by 1, 2 and 3 years

Tennis court boundary limits....the model gives an estimate of the boundary for the given risk estimate.

Re-treatment situations that occur within 1-6 months: if the 'first course' BED is low.

- Example would be treatment of 3 metastases using GammaKnife or Linac; 2 months later a new metastasis arises in a region which has received a BED of 10 Gy [2]. This dose should not be ignored in any further treatments.
- Or, long delays to complete an interrupted treatment course after only a few initial fractions given

Important Caveats

Stereotactic Radiosurgery

Radiosurgery for Multiple Brain Metastases

Different tissues – Whole Kidney

Data points of Fiona Stewart plotted as % BED/BED_{TOL} of the first and second treatment courses, with null effect line in grey and the least-squares fitted curve in black.

Further caveats

- Large field irradiations to whole organs not relevant to subvolume irradiation...e.g. urinary frequency inevitably worse with centripetal fibrotic shrinkage of bladder
- Small animal irradiators.....may give useful data but they use low keV x-rays which inevitable have a higher LET and RBE....they will suggest a higher α/β.

Relative Biological Effect – the ratio of ISOEFFECTIVE doses:

Paravertebral Epithelioid Sarcoma

Reduction in breast, lung cancer induction risk, cardiac sudden death and breathlessness on exertion; but if RBE incorrect and/or Bragg peaks misplaced there could be paralysis (spinal cord) and reduced tumour control

IM X-rays

IMProtons

RBE model

- Uses particle specific maximum LET efficiency point (LET_U).
- Scaling of increasing $\alpha_{\rm H}$ and $\beta_{\rm H}$ with LET
- Incorporates saturation relationships between reference (control – low LET) radiation α and β and the maximum values at LET_U.
- These α_H and β_H values are used in LQ model and with BED concept.
- Results compatible with known phenomena regarding RBE in different bio-systems

RBE Model

Uses separate increases in α and β with LET, rather than fixed multiple of α/β as in some other systems. Also included saturation effects to be more realistic (Jones 2016, 2017, 201)

Some modelled RBE and dose fractionation estimates using methods in Jones B, 2015: Cancers (Basel), but with control LET=0.22 keV.µm⁻¹

For $\alpha/\beta=2$ Gy White matter Conventional Tolerance 50 Gy in 25#

Cortical Brain (Grey Matter) Conventional Tolerance 60 Gy in 30#

Dose (Gv)	-	-	-	-		-	-
N-77	LET=1	LET=1.25	LET=1.5	LET=1.75	LET=2.0	LET=4.0	LET=8.0
d=1.25	1.10	1.12	1.15	1.18	1.21	1.42	1.80
	(1.08, 1.11)	(1.08, 1.14)	(1.13, 1.18)	(1.16, 1.21)	(1.18, 1.24)	(1.37, 1.48)	(1.7, 1.9)
d=1.5	1.09	1.11	1.14	1.17	1.19	1.38	1.72
	(1.07, 1.10)	(1.10, 1.13)	(1.12, 1.16)	(1.14, 1.19)	(1.16,1.22)	(1.33,1.44)	(1.63, 1.82)
d=1.8	1.08	1.10	1.13	1.15	1.17	1.35	1.66
	(1.07, 1.09)	(1.09, 1.12)	(1.11, 1.15)	(1.13, 1.17)	(1.15, 1.20)	(1.30, 1.40)	(1.57, 1.75)
d=2	1.07	1.10	1.12	1.14	1.16	1.33	1.62
	(1.06, 1.09)	(1.08, 1.11)	(1.10, 1.14)	(1.12,1.16)	(1.14, 1.19)	(1.28, 1.38)	(1.53, 1.71)
d=2.5	1.06	1.08	1.10	1.12	1.14	1.29	1.54
	(1.05, 1.08)	(1.07, 1.10)	(1.09, 1.12)	(1.10, 1.15)	(1.12, 1.17)	(1.24, 1.34)	(1.46, 1.64)
d=3	1.06	1.07	1.09	1.11	1.13	1.25	1.48
	(1.05, 1.07)	(1.06, 1.09)	(1.07, 1.11)	(1.09, 1.13)	(1.10, 1.15)	(1.21, 1.31)	(1.41, 1.58)
d=5	1.04	1.05	1.06	1.08	1.09	1.18	1.35
	(1.03, 1.05)	(1.04, 1.07)	(1.05, 10.8)	(1.06, 1.10)	(1.07, 1.11)	(1.14, 1.23)	(1.28, 1.44)
d=10	1.02	1.03	1.04	1.05	1.05	1.11	1.22
	(1.01, 1.03)	(1.02, 10.5)	(1.03, 1.06)	(1.03, 1.07)	(1.04, 1.08)	(1.08, 1.12)	(1.15, 1.31)
d=12.5	1.02	1.03	1.03	1.04	1.05	1.10	1.19
	(1.01, 1.03)	(1.02, 1.04)	(1.02, 1.05)	(1.02, 1.06)	(1.03, 1.07)	(1.06, 1.15)	(1.12, 1.28)

$\alpha/\beta=2$ Gy: Central Nervous System [Jones B, Acta Oncol 2017, supplementary section]

RBE changes with method of beam delivery: passive scattering or scanned beams

Actively **Scanned** pencil beams: Data of Britten et al (Radiation Research 2013), Bloomington USA **Passively scattered** beams: Data of Megnin-Chanet (Calugaru et al Int J Radiat Oncol Biol & Physics, 2011), Orsay, Paris.

Both used two different cell lines for targets at 4 and 20 cm depth, given same dose and LET profile

Variation in RBE (Relative Biological Effectiveness) with depth and delivery systems (pre-scattered versus scanned pencil beams).

Modelled Bloomington USA and Orsay, Paris, results. Working Hypothesis : inter-track distances are stable for scanned beams, but increase with depth for pre-scattered beams due to 'inverse square law' effects. This will change the averaged LET per voxel of interest. LET 'Density' = LET \times Fluence (Energy/distance \times N/Area) or Total Energy per unit volume.

Grassburger, Trofimov, Lomax and Pagganetti: IJROBP 2011, 80: 1559-1566

35% of prescribed dose in optic chiasm, but LET ~ 7.5 keV. μ m⁻¹

BED with dose sparing + LET

Some re-treatment examples

First treatment: Photons to 47.5 Gy in 30 fractions; with no adverse features

Second treatment (Protons), 18 months later, with two different LET possibilities using 1.6 Gy protons/# (physical dose)

(a) LET= 1.5 keV. μ m⁻¹ RBE=1.14 \rightarrow N=23 fractions

Total Dose 36.8 Gy

(b) LET= 5 keV. μ m⁻¹ RBE=1.47 \rightarrow N=16 fractions Total Dose 25.6 Gy

Caveat: For 'generic' RBE= $1.1 \rightarrow N=24 \#$, Tot.Dose=38.4 Gy

But if LET actually=5 then BED=122 Gy $_{[2]}$, which far exceeds tolerance of 100 Gy $_{[2]}$ \rightarrow High Risk

Two proton therapy courses, 2 years apart, no adverse histories

First: N=30, d=1.3 Gy (physical dose)

If LET=3, RBE=1.32, BED=95.7 Gy [2], equiv. photon dose=1.72 Gy If LET=1.5, RBE=1.15, BED=78.38 Gy [2], equiv. photon dose=1.5 Gy *Note for LET>3.5 this would have exceeded tolerance*

If second course also treated in 30 fractions:

Re-treatment schedules: max permissible doses are:

If LET=3, \rightarrow N= 29# of 1.3 Gy

If LET=1.5, \rightarrow N=35 # , so 30# of 1.3 Gy permissible.

Caveat:

If RBE=1.1, then N=38#; with 30# near tolerance limit for LET=3, so for actual LET>3 there is **high risk**

In principle, the following approach can be used in these difficult clinical situations

- Estimate first course BED:
- If protons use LET and dose per fraction \rightarrow RBE.
- Use RBE to convert proton dose to equivalent photon dose which can be used in the retreatment GUI
- Use 'conservative factor' as appropriate for medical history.....5-20% reduction in tolerance BED.
- The estimated BED allowed for re-treatment is used with the intended proton dose per fraction, modified by the RBE according to the operative LET, to provide a max permissible number of fractions.
- The clinician must finally decide if a lower number of fractions is used.

What is required to improve re-treatment confidence?

- More experiments after low dose priming and higher doses, at 1, 2, 3 years? Difficult experiments in primates. Cost and ethical restrictions
- National or International data bases and analysis of similar groups of patients
- More precise allowances for chemotherapy effects, local surgery/pressure effects/trauma, age, medical conditions etc. required.

Some references

- Woolley TE, et al Int J Radiat Biol. 2018 Jun;94(6):515-531. The GUI is available in this paper
- Jones B, Acta Oncol. 2017 Nov;56(11):1374-1378. Gives estimated Proton RBE values
- Jones B, McMahon SJ, Prise KM. Clinical Oncology (R Coll Radiol). 2018 May;30(5):285-292. Scanned beam RBE's discussed.

Series in Physics and Engineering in Medicine and Biology Practical Radiobiology for Proton Therapy Planning

Bleddyn Jones

PEM Institute of Physics and Engineering in Medicine

People

Institutions

Medical Research Council

THE OXFORD RETREAT

MATHEMATICAL INSTITUTE

Wolfson Centre for

