Re-irradiation of Brain Targets: What have we learned and where do we need to go?

Workshop – Current Challenges of Patient Re-irradiation Sept 7, 2018

Caroline Chung MD MS FRCPC CIP Associate Professor, Radiation Oncology & Diagnostic Imaging Director of Advanced Imaging, Radiation Oncology The University of Texas MD Anderson Cancer Center

cchung3@mdanderson.org

Clinical Decision-making around Re-Irradiation: It's all about balancing probabilities of benefit vs. harm

What is the critical information for safe and effective delivery of re-irradiation?

- Details of prior RT: dose, fractionation, spatial distribution
- Behavior of tumor/target:
 - Tumor histology, biology/molecular/genetic
 - Response to initial RT: speed and duration
- Response of normal structures to RT:
 - Existing changes that may predict future RT sensitivity or functional outcomes
 - Pathophysiology of radiation injury
- Overall Status of the Patient

How are we doing at gathering this information?

Looking back at Re-irradiation of Primary Brain Tumors

Brachutharany				Conventionally fractionated				
Scharfan et al. 1992 (36)	66 CBM	Brachutharamy L125 64 A Gu	11.3 months	(stereotactic) radiotherapy				
Speed et al. 1992 (30)	66 CBM	Brachytheramy L125 64 4 Gy	11.5 months	Arcicasa et al. 1999 (59)	31 GBM	Fractionated conventional 2D-radiotherapy	13.7 months	
Sheed et al. 1997 (37)	45 WHO III	machyalerapy 1-120 04.4 Gy	12.3 months			34.5 Gy in 23 fractions (1.5Gy/F)		
Simon at al. 2002 (38)	40 GBM	Reschutherson In 102 40, 60 Gu	50 unels	Cho et al. 1999 (45)	25 GBM	Conventional fractionated radiotherapy	12.0 months	
Gebeuen et al. 2002 (38)	42 GDM 81 GDM	Climits brochutherney 60 Cu at 10 mm	35 0 weeks			37.5 Gy in 15 fractions		
Gabayan er al. 2000 (39)	14 WHO III	Glastie brachytherapy 60 Gy at 10 mm	A3.6 weeks	Koshi et al. 2007 (60)	11 GB M	Stere otactic radiotherapy	11.0 months	
Testis -1 -1 2007 (40)	24 CPM	Brochutherener In 102 40 Cu	43.0 weeks		14 WHO III	22 Gy in 8 fractions/8F (+ hyperbaric oxygen)	19.0 months	
Estrini et al. 2007 (40)	18 CBM	HDP brachytherapy 18 Gy	S/ weeks	Combs et al. 2008 (61)	8 GBM	Stere otactic radiotherapy	9.0 months	
Fabrini er al. 2009 (41)	3 WHO III	HDK blacitytierapy 18 Gy	o a montais		10 WHO III	36 Gy in 2 Gy per fraction		
Kielineereder et al. 2014 (42)	OR CRM	Brachuthernov L 125 60 Cu	10.4 months		7 low-grade	(+ Temozolomide 50mg/m ²)		
Schwartz et al. 2015 (42)	40 CBM	Brachytherapy I=125 50 Gy	13.4 months	Lee et al. 2016 (62)	21 GBM	Conventional fractionated radiotherapy	10.0 months	
Schwartz et al. 2015 (45)	28 WHO III	Brachytierapy 1-125 50 Gy	13.4 monuts		8 WHO III	(median dose 45 Gy)	Not reported	
a	28 WHO III				7 low-grade		Not reported	
Stere of actic radiosurgery	SC CIPM	Stars startis and amongs 12 Cr.	10.5 months					
Shneve et al. 1995 (44)	80 GBM	Stere of actic Factosurgery 13 Gy	10.5 months		_			
Cho et al. 1999 (45)	40 GBM	Stere of actic radiosurgery 17 Gy	11.0 months	a limitations of available data.				
Combs et al. 2005 (46)	32 GBM	Median 15 Gy (10-20 Gy)	10.0 monuts	• LIMILALI		IVAIIADIE Uala:		
Combs et al. 2005 (47)	54 GBM	Stere otactic radiotherapy	8.0 months					
	39 WHO III	36 Gy (15-62 Gy)	16.0 months					
		5×2 Gy conventional fractionation		• varia	inie renc	nting of		
Kong et al. 2008 (48)	65 GBM	Stereotactic radiosurgery 16 Gy	13.0 months	13.0 months				
	49 WHO III		26.0 months					
Patel et al. 2009 (49)	36 GBM	Stere otactic radiosurgery 18 Gy	8.5 months					
		Fractionated stereotactic radiotherapy	7.4 months					
		36 Gy in 6 fractions		<u> </u>				
Martinez-Carrillo et al. 2014 (50)	46 GBM	Stereotactic radiosurgery	7.5 months	months a OAD definitions				
	41 WHO III	Median 18 Gy (14-20 Gy)	17.0 months	• OAR definitions				
Bir et al. 2015 (51)	29 GBM	Stereotactic radiosurgery 10-20 Gy	7.9 months					
Pinzi et al. 2015 (52)	128 High-grade	Stereotactic radiosurgery or hypofractionated	11.5 months					
		Hypofractionated stereotactic radiotherapy		• D	osimetric	reporting		
Shepherd et al. 1997 (53)	33 GBM	Hypofractionated conformal radiotherapy	11.0 months					
	~ ~ ~ ~ ~	Escalation 20-50Gy				. •		
Lederman et al. 2000 (54)	88 GBM	Stereotactic hypofractionated radiotherapy	7.0 months	• ()	utcomes r	reporting		
		Median 24 Gy in 4 fractions				epereng		
Grosu et al. 2005 (55)	44 GBM	Stereotactic hypofractionated radiotherapy						
		36 PET/SPECT 30 Gy	9.0 months	• \/aria	hla nati	ont coloction		
E-1	0.000	8 CT/MRI (6x5 Gy)	5.0 months					
Fokas et al. 2009 (56)	53 GBM	Stereotactic hypofractionated radiotherapy	9.0 months					
F	105 0 0 1	30 Gy in 10 fractions	11.0			C • .		
Fogn et al. 2010 (57)	105 GBM	Stereotactic hypofractionated radiother apy	11.0 months	• +/_ n	athologi	cal confirmation		
	42 WHO III	Median 35 Gy in 10 fractions	10.0 months		athologi	carcommutor		
Dincoglan et al. 2015 (58)	28 GBM	Stereotactic hypofractionated radiotherapy	10,3 months					
		25 Gy in 5 fractions						

ANTICANCER RESEARCH 36: 4985-4996 (2016)

Patient Selection: Factors associated with RT toxicity

Age

Vascular comorbities

Metabolic comorbities

Smoking history

Current functional status

Baseline cognitive function

Imaging may reveal signs of patient-specific tolerance to RT

Phase II trial of Re-RT (3D-CRT) + TMZ in recurrent gliomas

Purpose: To assess the response rate, survival benefits and toxicity profile of TMZ then Re-RT (3D-CRT) for treatment of recurrent high grade glioma.

Eligibility:

- unequivocal evidence of tumour recurrence as shown by gadoliniumenhanced MRI after failing conventional RT +/- chemotherapy (only 6 prior TMZ treated)
- Histology included recurrent anaplastic astrocytoma, glioblastoma multiforme.

Interventions: (1) TMZ 200 mg/mÇ/day for chemonaïve and 150 mg/mÇ/day to previously treated patients, for 4-5 cycles (2) Then Re-RT 30-40 Gy by3D-CRT

Response: Measured on MR 2-3 wks post-RT

Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape.

Ellingson BM^{1,2,3}, Chung C⁴, Pope WB⁵, Boxerman JL⁶, Kaufmann TJ⁷.

	RECIST	Macdonald	RANO
Measurement	1D CE disease	2D CE diseaes	2D CE + FLAIR
Progression	20% increase in sum of lesions	25% increase in product of perpendicular diameters	25% increase in product of perpendicular diameters
Response	> 30% decrease in sum of lesions	> 50% decrease in produce of perpendicular diameters	> 50% decrease in produce of perpendicular diameters
Durablity of Response	Optional	Yes (≥ 4 wks)	Yes (<u>></u> 4 wks)
Definition of measurable dz	Yes	No	Yes
No. Target Lesions	Up to 5	Not specified	Up to 5
T2/FLAIR	No	No	qualitative
Steroids	No	Yes	Yes
Clinical status	No	Yes	Ye
Pseudo- progression	No	No	Yes

Current criteria only use conventional T1-gad (T2/FLAIR qualitative)

3D volume is recommended but need standardized approach

Growing interest in advanced imaging, particularly to differentiate tumor progression vs. pseudoprogression and radionecrosis

Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials

Benjamin M. Ellingson, Martin Bendszus, Jerrold Boxerman, Daniel Barboriak, Bradley J. Erickson, Marion Smits, Sarah J. Nelson, Elizabeth Gerstner, Brian Alexander, Gregory Goldmacher, Wolfgang Wick, Michael Vogelbaum, Michael Weller, Evanthia Galanis, Jayashree Kalpathy-Cramer, Lalitha Shankar, Paula Jacobs, Whitney B. Pope, Dewen Yang, Caroline Chung, Michael V. Knopp, Soonme Cha, Martin J. van den Bent, Susan Chang, W.K. Al Yung, Timothy F. Cloughesy, Patrick Y. Wen, Mark R. Gilbert, and the Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee

We need to standardize MRI acquisition protocols

- Lesion contrast is highly dependent on sequence parameters
- Lesion size is subjective due to ability for reader (or algorithm) to generalize across levels of image quality

Impacts:

- Diagnosis of recurrence
- Radiation Target delineation
- Measurement of treatment response

RTOG 0525: Management at tumor recurrence RT regimen used for Re-RT is widely variable

Patients received a variety of re-RT regimens

(stereotactic radiosurgery, FSRT, or brachytherapy).

Different dose & fractionations used, but details were not available for analysis

Phase II trial of Re-RT (3D-CRT) + TMZ in Recurrent High Grade Gliomas

Radiation: Re-RT 30-40 Gy by 3D-CRT

Target Definition:

- T1-images on MRI were used to define GTV.
- T2-weighted and FLAIR images were used to define CTV.
- PTV was defined by adding 1 cm to the GTV + surrounding oedema. The PTV was reduced in areas near organ at risks (OARs).
- Limited info on OAR constraints

Multi-center Ph I Dose Escalation of Hypofractionated SRT for Recurrent High Grade Gliomas

Characteristics (n - 15)				
Characteristics (n=15)	value			
Sex				
Men	12 (80)			
Women	3 (20)			
Age (y)				
Median (range)	63 (50-73)			
<60	5 (33)			
<u>≥</u> 60	10 (67)			
Histology				
Glioblastoma	10 (67)			
Anaplastic astrocytoma	5 (33)			
KPS, median score (range)	90 (70-100)			
MGMT methylation status				
Unknown	7 (47)			
Unmethylated	6			
Methylated	2			
Prior salvage chemotherapies				
Median (range)	2 (1-3)			
1 prior treatment, n	6			
2 prior treatments, n	8			
3 prior treatments, n	1			
Mean (range) tumor size at	2.65 (1.8-5.37)			
largest diameter (cm)				

Abbreviation: KPS = Karnofsky performance status. Values are number (percentage) unless otherwise noted.

GTV = T1-gad enhancing disease (post cycle 1 MR) +/mass-like T2/FLAIR abnormality, discretion of treating RO PTV = GTV + 2-5mm margin

3 patients: 9 Gy x 3, 5 patients: 10 Gy x 3, 7 patients: 11Gy x 3 [MTD based on 1 DLT - Gr3 fatigue and cognitive decline]

IJROBP, Vol. 99, No. 4, pp. 797e804, 2017

IMRT with Pulsed Reduced Dose Rate for Re-RT

Target Volume Definition:

GTV = defined on FLAIR/T2 MRI + 1-2 cm CTV margin + 3 mm PTV margin Rx dose: 54 Gy (range, 38 to 60 Gy) delivered in 30 fractions (1.8 or 2 Gy), Allowed full RTOG dose constraints to OARs

Median FU: 5.2 months – no increased toxicity such as radionecrosis noted

Practical Radiation Oncology (2017) 7, e391-e399

We need to bring the Medical Profession into the Data-Driven Era

'Practice of Medicine'

Data-driven Clinical Optimization

INCREASING STANDARDIZATION

Pilot trial of dose-volume constraints for reirradiation of recurrent brain tumors (PI: S. McGovern, MDACC)

Eligibility:

- Previous pathologic confirmation of a brain tumor treated with RT >6 months prior to Re-RT with imaging findings consistent with recurrent tumor
- Prior course of RT delivered at 1.5 2.5 Gy/fraction
- Prior 3D DVH data for OARs must be available

Pilot trial of dose-volume constraints for reirradiation of recurrent brain tumors

Primary Objective:

To estimate the rate of
 <u>></u> Gr3 CNS necrosis 6 months after Re-RT of the brain for recurrent tumor.

Secondary Objectives:

- To evaluate acute and late toxicities of re-RT
- To evaluate longitudinal changes in symptom burden of patients undergoing re-RT.
- To use Advanced Brain Tumor Imaging (ABTI) to evaluate changes in the brain after re-RT (progression,RN, pseudoprogression)
- To estimate PFS and OS following reirradiation.

Dose-Volume Constraints for Re-RT

RT2 Dose constraints:

	Max D0.03cc
OAR	(Gy or GyRBE)
Optic nerves (ON)	55
Optic chiasm (OC)	56
Brainstem	60
Eye, including retina	50

^aGBM = glioblastoma or gliosarcoma
^bBevacizumab must be given
concurrently with RT2.
^c[Brain – PTV] = [Whole brain – (PTV
+ OC + RON + LON + Brainstem)]

RT1 + RT2 Dose constraints:

						Max D0.03cc	Max D1cc
				Max D0.03cc	Max D1cc	ON, OC	Brainstem
	Age at	Current	Time since	[Brain – PTV] ^c	[Brain – PTV] ^c	(Gy or	(Gy or
Group	RT2 (y)	Diagnosis	RT1	(Gy or GyRBE)	(Gy or GyRBE)	GyRBE)	GyRBE)
1	0 - 18	Any	6 mo – 3 y	95	90	60	70
2	0 - 18	Any	> 3 y	100	95	70	80
3	> 18	Any except GBM ^a	6 mo – 3 y	100	95	65	70
4	> 18	Any except GBM ^a	> 3 y	105	100	75	80
5	> 18	GBM ^a without Bev	> 6 mo	105	100	75	80
6	> 18	GBM ^a with Bev ^b	> 6 mo	110	105	80	85

Serial Changes on DTI MR: Clinical & Dosimetric Correlation

Target Definition – Humans are inconsistent

- 16 participating GK centers
- Axial and coronal T1-w, coronal T2-w and CT (bone-window) images were provided for target delineation

We need better understanding of what we are visualizing

Sandstrom-Acta Neurochir 2014

Multiparametric Imaging for Brain

Need to effectively integrate imaging data for RT planning

Improving Target Definition

Amino-acid PET versus MRI guided re-irradiation in patients with recurrent GBM (GLIAA) protocol of a randomized Ph II trial (NOA 10/ARO 2013-1)

Target n=200 (1:1 randomization)

Dependent on human expertise Increasing potential for automation/standardization

Major Challenge:

Defining goals Defining ground truth

Working towards the 'Ground Truth' in Imaging

• Collaborative effort between therapy (RO, SO, MO, IR), diagnostic imaging and pathology

Anatomical/Functional Imaging

- Target Definition for RT
- Enable serial non-invasive biological imaging interpretation for personalized therapy adaptation

Big Data is Critical for Data-Driven Re-Irradiation

Each case is so unique, a personalized approach is critical.

To learn from unique treatment approaches, we need to share a common reporting framework

EmilysQuotes.Com

In the middle of *difficulty* lies opportunity.

-Albert Einstein

