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Clinical challenge

• A patient who received previous radiation treatment comes with a second 
primary tumour in or near the previously treated area or a recurrence in 
the previously treated area.

• Options:
– Surgery (not all patients are operable or their tumours can be resected)

– Chemotherapy (generally a palliative approach)

– Re-irradiation (could offer disease control)

• Challenge: Find the dose (distributions) that would allow the control of the 
second tumour while avoiding significant acute and late morbidity.
– Use the tool of modelling the complication probabilities in the normal tissues taking into 

account both treatments.
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Modelling

• To simulate a process, a concept or the operation of a system (commonly 
with the aid of a computer).
– Starting from ground principles and processes (mechanistic modelling)

– Starting from observations (empirical modelling)

– Combining observations and principles (semi-empirical/semi-mechanistic modelling)

• The aims of modelling the process leading to complications could be:
– To describe it

– To predict its outcome
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NTCP models

• Lyman-Kutcher-Burman (LKB) model:
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• Logit model:
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• Relative seriality (RS) model:
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Non-mechanistic

Generally assume uniform irradiation



NTCP models

• The NTCP models have different shapes.
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Applying NTCP models

• What are the relevant OaR?
– Model parameters: α/β, D50, m, k, s

• How are the dose distributions in an organ?
– Could we use DVH reduction to find the equivalent uniform dose?

• In case of multiple plans, how was the dose deposited in the two 
treatments?
– Do the hotspots coincide in the two plans?
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Dose distributions in radiation therapy

• Normal tissue irradiation is seldom uniform.
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Dose volume histogram (DVH)

• Irradiation heterogeneity is quantified by the DVH.

Alexandru Dasu

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0,00% 20,00% 40,00% 60,00% 80,00% 100,00% 120,00%

V
o

lu
m

e

Dose (% of prescribed dose)



Dose volume histogram (DVH)

• Irradiation heterogeneity is quantified by the DVH.

• Spatial distribution is lost.
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Dose volume histogram (DVH)

• Describe dose delivery with various doses per fraction.

• A conversion is needed to relate the doses to known thresholds.
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EQD2 (equivalent dose in 2 Gy fractions)

• Each bin (Di) in the DVH could be converted to the equivalent dose in 2 Gy
per fraction, (EDQ2)i.

𝐸𝑄𝐷2 𝑖 = 𝐷𝑖
1+
𝑑𝑖
 𝛼 𝛽

1+
2

 𝛼 𝛽

or 𝐸𝑄𝐷2 𝑖 = 𝐷𝑖
1+

 𝐷𝑖 𝑛

 𝛼 𝛽

1+
2

 𝛼 𝛽
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gEUD (generalized Equivalent Uniform Dose)

• The DVH could be further compressed into the gEUD.

𝑔𝐸𝑈𝐷 =  

𝑖=1

𝑀

𝐸𝑄𝐷2 𝑖
 1 𝑎
∙
𝑉𝑖
𝑉

𝑎

• The conversion of the DVH into gEUD removes any measure of the 
heterogeneity since it is a single value.
– Two different DVH distributions could result in the same gEUD.

– This is especially problematic for tissues with non-uniform sensitivity.

• gEUD values are used in NTCP models (logit and LKB).
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Plan summation

• NTCP calculation often involves plan summation, e.g. main (elective) plan 
and a boost (or initial plan and re-irradiation plan).

DVH from the elective plan DVH from the boost plan
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Plan summation

• The DVH of the TPS plan sum has no radiobiological meaning as its bins 
are sums of physical doses from different fractionations.

• gEUDs are not additive.

• Summing the hotpots as the worst case scenario
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Plan summation

• The DVH of the TPS plan sum has no radiobiological meaning as its bins 
are sums of physical doses from different fractionations.

• gEUDs are not additive.

• But EQD2 are additive.
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Back to basics!

• Do a voxelwise summation taking into account the fractionation patterns.

𝐸𝑄𝐷2 𝑖 = 𝐷𝑖

1 +
𝑑𝑖
 𝛼 𝛽

1 +
2
 𝛼 𝛽

1

+ 𝐷𝑖

1 +
𝑑𝑖
 𝛼 𝛽

1 +
2
 𝛼 𝛽

2

• One could produce an EQD2VH to be further used for gEUD and NTCP 
calculations.
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Plan summation

• The EQD2 contributions of several relevant plans could be summed up:

• 𝐸𝑄𝐷2 𝑖 = 𝐷𝑖
1+
𝑑𝑖
 𝛼 𝛽

1+
2

 𝛼 𝛽 1

+ 𝐷𝑖
1+
𝑑𝑖
 𝛼 𝛽

1+
2

 𝛼 𝛽 2

+

𝐷𝑖
1+
𝑑𝑖
 𝛼 𝛽

1+
2

 𝛼 𝛽 3

+ 𝐷𝑖
1+
𝑑𝑖
 𝛼 𝛽

1+
2

 𝛼 𝛽 4

+⋯
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Plan summation

• Leung et al (2011) compared the maximum organ doses between the 
summation of the maximum dose and the maximum of the sum of EQD2

for H&N treatments and found up to 4.2 Gy in differences.

• They also reported that the summation of maximum doses could lead to 
an overestimation of the NTCP.

• Most studies do not report fractionation-corrected cumulative doses, 
which could be an issue when data pooling is attempted.
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Plan summation in retreatment

• EQD2VH summation is recommended for accounting the effects of 
retreatments.

• There are however studies reporting NTCP calculations based on the 
summation of maximum dose or average OaR dose (e.g., Krauze et al 
2017).
– The lack of clinical data for model validation hampers the filtering out of erroneous 

approaches.

• Does one have to account for tissue recovery from the previous treatment 
for the new NTCP calculation?
– How much time has passed since the previous treatment?

– How do the radiation-induced changes modulate the response to re-irradiation?
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Accounting for increased treatment time

• The effect of breaks could be accounted for with a time factor 𝑓 𝑇

𝐸𝑄𝐷2 𝑖 = 

𝑗

𝐷𝑖

1 +
𝑑𝑖
 𝛼 𝛽

1 +
2
 𝛼 𝛽

𝑗

− 𝑓 𝑇
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Time factors in radiation therapy 

• This approach is used in isoeffect modelling, and could handle treatment 
breaks taking several weeks:

• For early reacting tissues (α/β>10 Gy), f T =

ln2

α

T−Tk
Tp

1+
2

 α β

• For late reacting tissues (α/β<3 Gy), f T = 0
• But is it?
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• For late reacting tissues (α/β<3 Gy):
• Thames et al (2010) reported the existence of a time factor for prostate tumours 

(α/β=1.5 Gy), hence f T =

ln2

α

T−Tk
Tp

1+
2

 α β

for late reacting tissues as well.

• The effects of the time factor might be obscured by most primary treatments being 
ready before the relevant Tk. 
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Time factors in radiation therapy

• Which leads to an interesting development for NTCP modelling.

𝐸𝑄𝐷2 𝑖 = 

𝑗

𝐷𝑖

1 +
𝑑𝑖
 𝛼 𝛽

1 +
2
 𝛼 𝛽

𝑗

−

𝑙𝑛2
𝛼
𝑇 − 𝑇𝑘
𝑇𝑝

1 +
2
 𝛼 𝛽

• Most treatments are shorter than Tk.
– At present we do not have (late reacting) tissue-specific recovery parameters.

• Not yet clear whether time factors are applicable at voxel level.
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Time factors for re-irradiation

• Can this approach account for all long-time recovery processes?

• Acute reacting tissues usually recover completely after conventional 
fractionation.

• Do SBRT treatments activate mechanisms not accounted for by the 
BED formalism?

• Does one need to account for voxel-specific recovery?

• Some late reacting tissues (CNS, lung) recover partially after conventional 
fractionation, while others (heart, kidney) do not.

• Can this observation be related to the other mechanisms and 
patterns of recovery from the first treatment course?
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Data on recovery after spinal irradiation

• Spinal irradiation in rhesus monkeys.
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Accounting for tissue recovery at reirradiation

• Woodley et al (2018) defined a recovery function to predict radiation 
myelopathy after repeated irradiation.

• Start by determining the BEDNTCP for a clinically acceptable NTCP, e.g. 1%.

• Assuming that BED1 and BED2 are the BEDs for the initial and second 
treatments, respectively, normalised to the BEDNTCP.

• where
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More reirradiation-specific questions

• If the first treatment course induces genetic instability, can we continue 
using the same parameters for the BED formalism for the re-treatment 
course?

• In case of heterogeneous irradiations, should tolerance/NTCP calculations 
be performed at voxel level or rather at TRU level?

• Can we use imaging for voxel-specific quantification of normal tissue 
function and/or recovery parameters?

• This leads to the possibility of having voxel-specific recovery 
parameters.
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Patient anatomy changes

• Within one course or between the initial and retreatment courses. 

• Voxel tracking through deformable image registration (DIR) is needed.
– The DIR algorithm used could introduce a dose uncertainty in the DVH.

• Also relevant for intra-treatment changes (e.g., physiological motion).
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Plan availability and calculation algorithms

• Candidates for re-irradiation may have received the initial plan more than 
a decade before.

• Is the original plan still available or it has to be reconstructed?
– Is the CT data set still available?

– Is the treatment machine still available in the TPS? 

• What dose calculation has been used?
– The accuracy of dose calculation varies between algorithms, with older convolution 

algorithms being less accurate than newer ones (AAA, CC or MC), especially in 
heterogeneous media.
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What if different radiation modalities are used?

• Particle therapy (a potential candidate for re-irradiation) is characterised 
by depth and tissue-dependent RBE.

• These variations could be reflected upon the dose distributions (DVHs) 
used for NTCP calculations. 
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RBE-dependent treatment optimisation

• Accounting for RBE variations for plan evaluation and optimisation is 
advancing fast.

Alexandru Dasu

Ödén et al (2018)



Conclusions

• Available NTCP models are derived from uniform irradiations.
– The impact of DVH reduction techniques for tissues with non-uniform sensitivity is not 

yet explored.

• Plan summation and voxel-tracking techniques are needed to account for 
real dose distributions in normal tissues.

• Treatment optimisation for particle therapy should account for RBE 
variations.

• Accounting for tissue recovery between treatment courses is still the most 
challenging aspect of re-irradiation.
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Thank you!


