RE-IRRADIATION OF VERTEBRAL BODIES

Dorota Gabrys MD, PhD, MSc

7 September 2018 Stockholm Sweden

Vertebral metastases

- Improvement in clincal care and therapy patients are diagnosed and living longer
- 60–70% of patients with systemic cancer will have spinal metastasis
- 20% complete response after EBRT and partial responce 60%
- 20% after eg 8 Gy will rquire re-irradiation due to pain progression,
- Longer lenght patients survivals eg 2 yers 50-80% will have tumor progression

Tumour of vertebral bodies

• Why they are important?

- Can involve the
 - bone
 - epidural space
 - leptomeninges
 - spinal cord

www.spineuniverse.com

Tumour of vertebral bodies

• Pain

- Mechanical instability
- Fracture
- Radiculopathy
- Neurological dysfunction related to malignant epidural spinal cord compression

www.neupsykey.com

Imaging of vertebral metastases

CT, Lung cancer

MRTI, Rectum cancer

MR T2, Kidney cancer

PETCT, Prostate cancer

Vertebral bodies radiotherapy

- Pain and other symptoms relief
- Preventing spine tumors growth
- As an option for surgery
- Shrinking tumors for easier removal
- Cure the patient

Technical improvements

Re-irradiation of bone metastases

- 850 patients (237 spine): 8 Gy/1 fx vs 20 Gy/5 fx
- Primary RT: 6, 7, 8 Gy/1 fx, 18 Gy/4 fx, 20 Gy/5 fx, 24 Gy/6 fx, 27 Gy/8 fx, 30 Gy/10 fx
- Interval at least 4 weeks, 2 month assessment after re-irradiation
- II8 (28%) 8 Gy vs I35 (32%) 20 Gy had an overall pain response to treatment
- Pathological fractures 30 (7%) 8 Gy and 20 (5%) 20 Gy
- Spinal cord/cauda equina compressions 7 (2%) 8 Gy vs 2 (<1%) 20 Gy

Vertebral body radiosurgery

- Fewer fractions, shorter treatment, more convenients for patient
- Highier doses are potentialy more effective
- High precision less normal tissue irradiation
- Small margins, large set up errors with inacurate positioning
- High sensivity of spinal cord to large fractions

Prostate cancer patient with whole vertebral bone and lymph node metastases August 2018

1995 – First spinal radiosurgery

- Linac delivery with circular collimators
- System accuracy < 2mm
- 8-10 Gy with no portion of cord receiving > 3 Gy

The Epidural Spinal Cord Compression (ESCC) scale

- Grade 0 Bone-only disease
- Grade Ia Epidural impingement, without deformation of thecal sac
- Grade 1b Deformation of thecal sac, without spinal cord abutment
- Grade Ic Deformation of thecal sac, with spinal cord abutment, without cord compression
- Grade 2 Spinal cord compression, with CSF visible around the cord
- Grade 3 Spinal cord compression, no CSF visible around the cord

Bilsky et al. J Neu Spine 2010 Laufer et al. Oncologist 2013

Neurologic, Oncologic, Mechanical, Systemic (NOMS) decision framework

Neurologic	Oncologic	Mechanical	Systemic	Decision
Low-grade ESCC + no myelopathy	Radiosensitive	Stable		cEBRT
	Radiosensitive	Unstable		Stabilization followed by cEBRT
	Radioresistant	Stable		SRS
	Radioresistant	Unstable		Stabilization followed by SRS
High-grade ESCC \pm myelopathy	Radiosensitive	Stable		cEBRT
	Radiosensitive	Unstable		Stabilization followed by cEBRT
	Radioresistant	Stable	Able to tolerate surgery	Decompression/stabilization followed by SRS
	Radioresistant	Stable	Unable to tolerate surgery	cEBRT
	Radioresistant	Unstable	Able to tolerate surgery	Decompression/stabilization followed by SRS
	Radioresistant	Unstable	Unable to tolerate surgery	Stabilization followed by cEBRT

- Radiosensitive: seminoma, lymphoma, breast, ovarian, prostate
- Radioresitant: sarcoma, melanoma, renal, thyroid, gastrointestinal, NSCLC

Laufer et al. Oncologist 2013

International Sterotactic Radiosurgery Society practice guidelines

• Following cEBRT, retreatment with SBRT is a recomended therapeutic option in suitable patients based on multidisciplinary assessment

level of evidence III

• Following SBRT, retreatment with SBRT is a recomended therapeutic option in suitable patients based on multidisciplinary assessment

level of evidence III

• For patients with clinical features concerning for malignant epidural spinal compression, mechanical instability, or baseline vertebral body compression, fracture, the radiation oncologist should consult a spine surgeon before the patients undergoes SBRT

level of evidence II

Myrehaug et al. J Neurosurg Spine 2017

Treatment Planning

- Where is the target?
- What kind of toxicity we have?
- What was the primary total dose and dose per fraction?
- What kind of toxicity we expect?
- What was the time between irradiations?
- What we can achieve?

•Do it carefully

Volume delineation in spinal radiosurgery

Red indicates contours and orange indicates consensus

Cox et al. IJROBP 2012

Volume delineation in spinal radiosurgery

Sumn	nary of contouring guidelines for GTV, CTV, and PTV in spinal stereotactic radiosurgery		
Target volume	Guidelines		
GTV	 Contour gross tumor using all available imaging Include epidural and paraspinal components of tumor 		
CTV	 Include abnormal marrow signal suspicious for microscopic invasion Include bony CTV expansion to account for subclinical spread Should contain GTV 		
PTV	 Circumferential CTVs encircling the cord should be avoided except in rare instances where the vertebral body, bilateral pedicles/lamina, and spinous process are all involved or when there is extensive metastatic disease along the circumference of the epidural space without spinal cord compression Uniform expansion around CTV 		
 Onform expansion around CTV CTV to PTV margin ≤3 mm Modified at dural margin and adjacent critical structures to allow spacing at discretion of the treating physici unless GTV compromised Never overlaps with cord Should contain entire GTV and CTV 			
Abbreviations: C	CTV = clinical target volume; GTV = gross tumor volume; PTV = planning target volume.		

Cox et al. IJROBP 2012

Volume delineation

What about the dose?

Combined dose to the normal tissue

Show DVH	7 Structure	Volume [cm³]	Dose Cover.[%]	Sampling Cover.[%]	Min Dose [Gy]	Max Dose [Gy]	Mean Dose [Gy]
<u> </u>	SpinalCord	3.6	100.0	99.9	6.188	29.684	23.964
	CaudaEquina	2.5	100.0	100.8	12.678	34.979	23.689
	Kidney_L	274.7	100.0	100.0	1.748	23.393	6.565
<u> </u>	Kidney_R	224.1	100.0	100.1	4.777	46.331	17.190
	Bowel.	2909.5	100.0	100.0	1.222	47.656	14.094
	Liver.	2327.5	100.0	100.0	1.134	26.586	5.392
<u> </u>	ThecalSac	20.3	100.0	99.8	5.724	46.125	24.436

Spinal cord max	7.6	5.6	18.1
-----------------	-----	-----	------

Re-irradiation of vertebral bodies

Reference	Contoured spinal cord structure	Median initial dose	Retreatment SBRT total dose/fraction
Ahmed 2012	Spinal cord	30 Gy/10 fractions	24 Gy/3 (median)
Boyce-Fappiano 2017	NR	30 Gy/10 fractions	16 Gy/1
Chang 2012	Thecal sac	20 (20 C Cult (modian)
Choi 2010	NR	39 Gy (mean) 40 Gy/20 fractions	20.6 Gy/1 (median) 20 Gy/2 (median)
Damast 2011	NR	30 Gy/10 fractions	20 Gy/5 or 30 Gy/5
Garg 2012	THE .	50 Gy/10 machions	20 dy/5 01 50 dy/5
Garg 2012	Spinal cord	30 Gy/10 fractions	30 Gy/5 or 27 Gy/3
Hashim 2016	Spinal cord + spinal canal	30 Gy/10 fractions	16.6/1 or 24 Gy/3 (median)
Mahadevan 2011	Thecal sac	30 Gy/10 fractions	25–30 Gy/5 or 24 Gy/3
Sahgal 2009	Spinal cord + 1.5 mm PRV or thecal sac	36 Gy/14 fractions	24 Gy/2
Thibault 2014 Thibault 2015	Spinal cord + 1.5 mm PRV or thecal sac	30 Gy/10 fractions	24 Gy/2
Sahgal 2012	Spinal cord + 1.5 mm PRV or thecal sac	24 Gy/2 or 24 Gy/2 + 30 Gy/10 fractions	30 Gy/4 (median)
	FRV OF thecal sac	20 Gy/5, 30 Gy/10, 37.5	
Recommendations		Gy/15	
		40 Gy/20 or 45 Gy/25	
		50 Gy/25	

Myrehaug et al. Clinical Oncology 2017

Response to re-irradiation

	Study type	Targets treated	Local control	Overall survival	Pain response	VCF
Ahmed 2012	Prospective	22	1 year, 83%	1 year, 28%	NR	5%
Boyce-Fappiano 2017	Retrospective	237	1 year, 71%	NR	81%	9.3%
Chang 2012	Retrospective	54	1 year, 81%	Median, 11 months	81%	22%
Choi 2010	Retrospective	51	1 year, 73%	1 year, 68%	65%	NR
Damast 2011	Retrospective	92	1 year, 66%	Median, 13.6 months	77%	9.8%
Garg 2012	Prospective Phase I/II	63	1 year, 68%	1 year, 76%	Improvement at 6 months	NR
Hashimi 2016	Multi-institutional pooled analysis	247	1 year, 83%	1 year, 48%	74.3%	4.5%
Mahadevan 2011	Retrospective	81	1 year, 93%	Median, 11 months	79%	NR
Sahgal 2009	Retrospective	37	1 year, 82%	Median, 21 months	NR	NR
Thibault 2014	Retrospective	11	1 year, 83%	NR	NR	0
Thibault 2015	Retrospective	56	1 year, 81%	Median, 10 months	NR	NR

NR, not reported; VCF, vertebral compression fracture.

Pooled analysis included both single and muhedian dose/fractionation is provided for both treatment options.

Myrehaug et al. Clinical Oncology 2017

No RM I st: EQD2 39.8 Gy_{2/2} (29.0–64.5 Gy), 15 mts (5–85) 2nd: 24 Gy (10–30 Gy) in 3 (1–5) fractions

RM | st: EQD2 38 Gy_{2/2} (18.3–52.5 Gy2), 18 mts (11–81) 2nd: 20 Gy_{2/2} (12-32) in 1-3 fractions

Shagal et al. 2012

Adverse effects

• Acute pain – self-resolving; dexamethasone reduce the risk of pain flare from 53% to 26% after cEBRT

Chow et al. Lancet Oncol 2015

• It is effective both as a rescue for pain flare and as prophylactic treatment with 4 or 8 mg orally per day started on day 1 of SBRT and for 4 days after

Khan Support Care Cancer 2015

- Early VCF an intense inflammatory reaction and tissue necrosis that causes destabilisation of the bony architecture, resulting in mechanical compromise
- Late VCF phase of radiation necrosis and fibrosis may result in continued changes in the strength of the bone that renders it weaker and unable to sustain the loading forces

Myrehaug et al. Clinical Oncology 2017

Critical organs

- Spinal cord
- Cauda equina
- Large vessels
- Brain
- Larynx
- Thyroid
- Oesophagus
- Stomach
- Trachea
- Lung
- Heart
- Liver
- Kidney
- Small and large bowel
- Blader
- Rectum

Follow up

Study	Follow up shedule
Choi 2010 Thibault 2014 Garg 2011 Navarria 2012	MRI every 2-3 months
Damast 2011	MRI every 3-4 months
Ahmed 2012	MRI at 2 months then every 6 months±PET
Chang 2012	MRI/PET at 3,6,&12 months
Mahadevan 2011	CT I month, otherwise not defined
Hashimi 2016	MRI/PET not specified
Sahgal 2012	Clinically I month & every 3-6 months

Dose constrains for spinal cord

Structure	Single-Fraction SRS	Hypofractionated SRS (3 fxn)	Hypofractionated SRS (5 fxn)
Spinal cord	$\begin{array}{l} D_{\max} = 14 \ \mathrm{Gy} \ \mathrm{or} \ 12 \ \mathrm{Gy} \ \mathrm{max} \ \mathrm{circumferential} \ \mathrm{dose} \\ (\mathrm{myelogram} \ \mathrm{defined} \ \mathrm{cord} \ \mathrm{MSKCC}) \\ D_{\max} = 13 \ \mathrm{Gy} \ \mathrm{QUANTEC} \ (\mathrm{myelopathy} < 1\%) \\ \end{array}$ $\begin{array}{l} D_{\max} = 14 \ \mathrm{Gy} \\ \mathrm{RTOG} \ 0915 \\ V_{7 \ \mathrm{Gy}} < 1.2 \ \mathrm{cm}^{3} \\ D_{\max} = 10 \ \mathrm{Gy} \\ \mathrm{RTOG} \ 0631 \\ \mathrm{And} \ V_{10} < 0.35 \ \mathrm{cm}^{3} \\ \mathrm{And} \ V_{14} < 0.03 \ \mathrm{cm}^{3} \\ D_{\max} = 12.4 \ \mathrm{Gy} \ (\mathrm{Sahgal} \ \mathrm{myelopathy} < 5\%) \end{array}$	D _{max} = 21 Gy total (myelogram defined cord) D _{max} = 20.3 Gy (Sahgal myelopathy <5%)	D _{max} = 25 Gy total (myelogram defined cord) D _{max} = 25.3 Gy (Sahgal myelopathy <5%)

Katsoulakis et al. Sem in RO 2017

Re-irradiation of vertebral bodies

Reference	Contoured spinal cord structure	Median initial dose	Retreatment SBRT total dose/fraction	Retreatment spinal cord dose	Cumulative cord/thecal sac EQD2	Reported myelopathy
Ahmed 2012	Spinal cord	30 Gy/10 fractions	24 Gy/3 (median)	Dmax 17 Gy (median)	70.1	1%
Boyce-Fappiano 20	017 ^{NR}	30 Gy/10 fractions	16 Gy/1	10 Gy to 10% of spinal cord, Dmax 14 Gy	93.5	0.6%
Chang 2012	Thecal sac	39 Gy (mean)	20.6 Gy/1 (median)	Dmax 12 Gy (median)	83.4	0%
Choi 2010	NR	40 Gy/20 fractions	20 Gy/2 (median)	Dmax 19.3 Gy (median)	96.2	2%
Damast 2011	NR	30 Gy/10 fractions	20 Gy/5 or 30 Gy/5	14 Gy Dmax spinal cord 16 Gy Dmax cauda equina	58.3	0%
Garg 2011	Spinal cord	30 Gy/10 fractions	30 Gy/5 or 27 Gy/3	10 Gy (mean) 9 Gy (mean)	47.5 48.7	0%
Hashimi 2016	Spinal cord + spinal canal	30 Gy/10 fractions	16.6/1 or 24 Gy/3 (median)	NR	65.6 (1 fraction) 47.8 (3 fractions)	0%
Mahadevan 2011	Thecal sac	30 Gy/10 fractions	25-30 Gy/5 or 24 Gy/3	Dmax 30 Gy (5 fractions) or 24 Gy (3 fractions)	97.5	0%
Sahgal 2009	Spinal cord + 1.5 mm PRV or thecal sac	36 Gy/14 fractions	24 Gy/2	12.2 Gy Dmax spinal cord	65.8	0%
-	Spinal cord + 1.5 mm PRV or thecal sac	30 Gy/10 fractions	24 Gy/2	12.2 Gy	75.5	0%
Thibault 2014 Thibault 2015 Sahgal 2012	Spinal cord + 1.5 mm PRV or thecal sac	24 Gy/2 or 24 Gy/2 + 30 Gy/10 fractions	30 Gy/4 (median)	12.2 Gy Dmax spinal cord PRV or thecal sac	54.6 80.4	0%
-		20 Gy/5, 30 Gy/10, 37.5		1 fraction: Dmax 9 Gy		
Recommendations		Gy/15		2 fraction: Dmax 12.2 Gy		
				3 fraction: Dmax 14.5 Gy 4 fraction: Dmax 16.2 Gy		
				5 fraction: Dmax 18 Gy		
		40 Gy/20 or 45 Gy/25		1 fraction: Dmax N/A		
		10 09/20 01 10 09/20		2 fraction: Dmax 12.2 Gy		
				3 fraction: Dmax 14.5 Gy		
				4 fraction: Dmax 16.2 Gy		
				5 fraction: Dmax 18 Gv		
		50 Gy/25		1 fraction: Dmax N/A		
				2 fraction: Dmax 11 Gy		
				3 fraction: Dmax 12.5 Gy		
				4 fraction: Dmax 14 Gy		
				5 fraction: Dmax 15.5 Gv		

EQD2, equivalent dose to 2 Gy/day fraction size; NR, not reported; Dmax, maximum point dose: V10, volume receiving 10 Gy radiation; SBRT, stereotactic body radiotherapy; PRV planning organ-at-risk volume.

S. Myrehaug et al. Clinical Oncology 2017

Late effects – spinal cord

Late effects – spinal cord clinical

Study	Cumulative EQD2 median
Jackson 1987	65 Gy (58.5-65.5)
Baumann 1996	60.7 Gy (58.5-63)
Magrini 1990	57.8 Gy (47.8-67.8)
Wright 2006	47.5 Gy (11-56.5)
Navarria 2012	51.25 Gy (27.9-57.6)
Wong 1994	71.5 Gy (67-81.5)
Kawashiro 2016	59.1 Gy (47.5-82.3)

No myelopathy for cumulative EQD2 < 67,5 Gy₂ if neither course exceeds 45 Gy₂

Spinal cord dose-volume effect

- Dmax 50.2 to 57.1 Gy
- 4 pts 0.5 cm³ vol. 50.4–53.6 Gy
- 2 pts 1.0 cm³ vol. 52.8–51.2 Gy

Zschaeck et al. Strahlenther Oncol 2017

• 0.5 cm³ vol 45.5 Gy (40.7-53.3)

Kawashiro Journal of Radiation Research 2016

No neurological symptoms

Medin et al. IJROBP 2012

- December 2013
- Paliative radiotherapy
- 2 AP-PA fields
- total dose: 30 Gy

• df: 3 Gy

EQD₂ = D
$$\left(\frac{d + \alpha/\beta}{2 + \alpha/\beta}\right)$$
 = 30 $\left(\frac{3.0 + 2}{2.0 + 2}\right)$ = 37,5

June 2014 Gated radiotherapy, Total dose: 32 Gy df: 8 Gy

- D max spinal cord 7.97 Gy
- Recalculated dose to 2 Gy?

EQD₂ = D
$$\left(\frac{d + \alpha/\beta}{2 + \alpha/\beta}\right)$$
 = 7.97 $\left(\frac{2.0 + 2}{2.0 + 2}\right)$ = 7.97

I Rt + 2 RT 37.5 + 7.97 = 45.47

Lost from follow up return in October 2016 with tumour progression

Question:

How calculate the dose to the spinal cord?

 $I Rt + 2 Rt + 3 RT 37.5 + 7.97 + 4.53 = 50 Gy_2$

EQD₂ = **D**
$$\left(\frac{d + \alpha/\beta}{2 + \alpha/\beta}\right)$$
 = **7** $\left(\frac{0.47 + 2}{2.0 + 2}\right)$ = **4.3 I**

 $I Rt + 2 Rt + 3 RT 37.5 + 7.97 + 4.3I = 49.78 Gy_2$

- Plliative radiotherapy total dose: 30 Gy, df: 2 Gy
- Spinal cord **6.2 Gy** in 15 fx (**3.7 Gy**₂)

Clinical example

- Inoperable
- Did not quelified to systemic treatment
- August 2017 Gastrostomy
- October 2017 Palliative brachytherapy
 Total dose: 18 Gy, df: 6 Gy
- August 2018 stable disease on CT, pain controlled with drugs, gastrostomy

Conclusion

- Re-irradiation of vertebral bodies is feasible
- Have to be performed with extreme accuracy and precision
- Dose constrains are not confirmed in a large trials

Thank you

