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Methods specific to radiation epidemiology

• Nested case-control study

• Linear excess relative risk model

• Shape of dose-response relationship

• Interaction

• Choice of dose metric
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Relevant study designs

• Primary & secondary cancers rare

• Start with large patient series = cohort studies

• Detailed treatment information needed to assess radiation risks

– Organ dose

– Other (treatment) factors as confounders

• Nested case-control study: detailed treatment information and dose esti-

mation for sample of all cases & subset of controls
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Incidence density sampling

• Matching on other factors to control for confounding, e.g., age, calendar

year of diagnosis

• The more controls per case the better for power, little improvement be-

yond 5 controls/case

• Conditional logistic regression analysis
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Example: Stomach cancer after testicular cancer

• Cohort: 22,269 5-yr survivors of primary testicular cancer (1959-1987)

• 6 European & North-American population-based cancer registries plus

Dutch hospital cohort

• 92 stomach cancer cases (1975-2004)

• 180 controls with testicular cancer individually matched by age & yr of

testicular cancer, gender, ethnicity, registry & stomach cancer-free sur-

vival
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Treatment data

• Medical records: cancer diagnoses, cancer treatment, radiotherapy fields

& target dose, chemotherapy cycles & doses

• Dose calculated to the stomach based on typical stomach configuration

• Custom-designed dose program, measurements in water & anthropomor-

phic phantoms constructed of tissue-equivalent material (Stovall et al.,

2006)
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Overview of patients
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Risk models
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Exponential failure rate model

λ [t, Z(t), D(t)] = λ [t, Z0(t)] e
βD(t)

• Z(t) risk factor history up to time t

• Z0(t) standard covariate history

• λ[t, Z(t), D(t)] failure rate at t for covariate history Z(t) and dose D(t)

• Relative risk

RR [t, Z(t), D(t)] =
λ [t, Z(t), D(t)]

λ [t, Z0(t)]
= eβD(t)

• Exponential appealing because: nonnegative RR & multiplicative joint

effects
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Excess risk models

• Excess absolute risk (EAR)

• Excess relative risk (ERR)
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Excess absolute risk model

RR(D) = λ0 + f(β,D)

where λ0=background risk

• Additive model

• Excess risk is independent of baseline risk
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Excess relative risk model

RR(D) = λ0[1 + f(β,D)]

where λ0=background risk

• Relative model

• Excess risk is multiple of baseline risk
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Motivation for linear excess relative risk (ERR) model

RR(D) = 1+ βD

• Biological/mechanistic (Kellerer and Rossi 1971 & 1976)

• Linear no threshold (LNT)

• Additive joint effect = independence

Synergism/antagonism = departure from additive

(Rothman, Greenland, Walker 1980)
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Properties of the linear ERR model

• Software: EPICURE, David Richardson’s SAS macro, David Morina’s R

package

• Poor asymptotic normality of maximum likelihood estimates for small

samples

• Positivity constraint

1 + βD > 0 ⇒ β ∈

(

−
1

maxD
,∞

)
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Properties of maximum likelihood estimators

• Essentially no optimal properties for finite samples

• Asymptotic properties

– Consistency: converges in probability to the value being estimated

– Asymptotic normality: as sample size increases, distribution of MLE

tends to the Gaussian distribution with mean & covariance matrix

equal to the inverse of the Fisher information matrix

– Efficiency: achieves the Cramer-Rao lower bound when sample size

tends to infinity, i.e., no asymptotically unbiased estimator has lower

asymptotic mean squared error than MLE
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Asymptotic normality

• Finite-sample bias: bias negligible for large enough samples, how large is

large enough?

• Degree of finite-sample bias tends to be directly proportional to number

of variables in model ⇒ adjustment for many potential confounders can

increase bias

• Sample size required for the Wald method is impractically large

• Ordinary Wald tests and intervals for parameters in additive RR models

can be grossly invalid, even at large sample sizes
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Alternative: Likelihood ratio or profile likelihood
estimation

Cole et al. 2013
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Example: Wald- vs. LR-based CI

• ERR=0.1422

Standard error=0.3741

• Wald-based 95% CI:

[0.1422− 1.96 ∗ 0.3741, 0.1422 + 1.96 ∗ 0.3741] = [−0.59,0.88]

• LR-based 95% CI:

[−0.006979, 15.22]
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Dose-response curve
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Dose-response curve

• Linear ERR model: one particular shape of dose-response relationship

• Allow for departure from linearity

• Test whether goodness of fit improves

• Departure can be mild or wild
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Different shapes

Linear ERR=βD (i.e., RR=1+βD)

Linear-quadratic ERR=βD + γD2

Quadratic ERR=γD2

Cubic spline ERR=β1D + β2D
2 + β3D

3

+β4max(D − d1,0)
3 + β5max(D − d2,0)

3 + . . .

Exponential curvature ERR=βDeγD

Linear threshold ERR=βmax(D − d1,0)

Non-parametric ERR=δj for dj − 1 ≤ D < dj
(categorical)
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Exponential curvature

RR = 1+ βDeγD

• Test departure from linearity by likelihood ratio test of H0: γ = 0

• If linearity rejected:

– Downward curvature (concave, γ < 0)

– Upward curvature (convex, γ > 0)
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More flexible curves – splines

RR = 1+ β1D + β2D
2 + β3D

3 + β4max(D − d1,0)
3 + β5max(D − d2,0)

3 + . . .

• Smooth piecewise polynomial with join points d1, d2, . . ., to accommodate

a local minimum or maximum

• Optimization for number and location of knots d1, d2, . . . difficult

⇒ choose small number of knots at percentiles (e.g., tertiles)

• Linear model nested in spline model

• Cubic truncated power spline parametrization ⇒ high correlation between

spline covariates, erratic tail behavior

• More stable results with B-splines (orthogonal basis functions) or natural

splines (restricted to linearity in the tails)
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Example: Stomach cancer after testicular cancer

Hauptmann et al. 2014
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Several non-linear models
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Linear

Loglinear

Cubic spline w/ 2 knots at tertiles

Reference

Exponential curvature vs. linear p=0.567 (1 DF)
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Linear fit and cubic spline

Cubic spline with 2 interior knots at dose tertiles among cases (22.1, 36.1)

Spline vs. linear p=0.456 (4 DF)
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Thyroid cancer in the Childhood Cancer Survivor Study

No. Model Ref. Deviance p

1 RR = 1 – 195.892 –
2 RR = 1+ 0.5117D 1 164.919 <0.001

4 RR = 1+ 1.316D e−0.00189D2
2 153.283 <0.001

14 RR = 1+ 0.8425D − 1.143max(D − 17,0) 2 154.566 0.0158
15 RR = 1+ 0.7211min(D,17) 14 157.755 0.074

Ronckers et al., 2006
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Valvular heart disease after treatment for Hodgkin
lymphoma

RR = 1+ eβDeγD

β = −5.015 (95%CI − 9.867,−1.915)

γ = 0.07531 (95%CI 0.007243,0.1774)

2-sided p-linearity=0.03

Cutter et al., 2015
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Questions

• Is there an overall dose effect?

Test (β, γ) = (0,0)

• Can the results be summarized in one ERR estimate?

No

• How can the results be summarized?

In a figure

• What is the confidence of the dose-response?
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////////////Interaction Joint effects
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////////////Interaction Joint effects

• Effect of two factors together is greater (synergism) or less (antagonism)

when they occur jointly than what would have been expected on the basis

of their separate effects

• “Null” no-interaction model needed (expectation under independent joint

action)

• “No interaction” based on additivity or multiplicativity?
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Joint effect in radiation epidemiology

• Multiplicative model: RR = eαX(1 + βD)

• Multiplicative with departure term: RR = eαx(1 + βD)eδ(X∗D)

• Additive model: RR = 1+ αX + βD

• Additive with departure term:

– RR = 1+ (αX + βD)eδ(X∗D)

– RR = 1+ αX + βD + δ(X ∗D)
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Additive or multiplicative “null” no-interaction model?

• Expectation under independent joint action of D & X

• Rare outcome, 2 causative factors acting through completely separate

causal pathways ⇒ expect additive joint effect

• However not always
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Two hunters aiming at same duck

• Both good aim ⇒ risk multiplicative in the complement

each hunter hits duck w/ probability .6 ⇒ risk for duck = 1− (1− .6)2

• Both very bad aim ⇒ risk for duck can be approximated by sum of 2 very

small risks

• Probabilistically independent risks combine additively if they are small but

not if they are large

• Continuous failure times: instantaneous risk (= hazard) small

⇒ hazards additive

Weinberg 2012
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Exceptions possible

• 2 factors acting independently at different stages of multistage carcino-

genic process (initiator vs. promotor) ⇒ combined effect multiplicative

• Example: initiator triples rate of formation of initiated cells, promotor

doubles likelihood for each initiated cell to transform to cancerous cell ⇒

6-fold risk from exposure to both factors

35



Little difference multiplicative/additive for small risks

• Additive joint RR=RR(D)+RR(X)-1

• Multiplicative joint RR=RR(D)*RR(X)

• Multiplicative:additive

RR(D)
RR(X) 1.2 1.5 2.0 3.0

1.1 1.3:1.3 1.7:1.6 2.2:2.1 3.3:3.1
1.2 1.4:1.4 1.8:1.7 2.4:2.2 3.6:3.2
1.3 1.6:1.5 2.0:1.8 2.6:2.3 3.9:3.3
1.4 1.7:1.6 2.1:1.9 2.8:2.4 4.2:3.4
1.5 1.8:1.7 2.3:2.0 3.0:2.5 4.5:3.5
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Synergy between radiotherapy and procarbazine among
Hodgkin lymphoma survivors

Morton et al. 2013
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Synergy between radiotherapy and procarbazine among
Hodgkin lymphoma survivors

Morton et al. 2013
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Antagonism between breast dose and ovary dose on
breast cancer risk among childhood cancer survivors

Inskip et al. 2009
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Antagonism between breast dose and ovary dose on
breast cancer risk among childhood cancer survivors

Inskip et al. 2009
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CVD in 10,000 breast cancer survivors

• Joint effect of radiotherapy to the internal mammary chain and

anthracycline-containing chemotherapy

• Non-parametric model

IMC Anthra RR 95% CI

N N 1.0 Ref
Y N 1.5 1.4, 1.7
N Y 1.5 1.1, 1.9
Y Y 2.1 1.7, 2.7
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Consistency with additive & multiplicative models

• Departure from additive joint effect (p>.5)

RR = 1+ .52 IMC+ .45 Anthra + .16 (IMC*Anthra)

• Departure from multiplicative joint effect (p>.5)

RR = EXP {.42 IMC+ .37 Anthra− .037 (IMC*Anthra)}

42



Dose metric
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Uncertainty in selection of dose metric

• Exposed yes/no → Whole body dose → Organ dose → Dose to tumor

location

• In prospective studies (cohorts): organ dose is best

• In retrospective studies (case-control): dose to tumor location

• Important since gradients of dose can be steep in medical radiation
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Case-control studies

• Dose to tumor location and corresponding location in matched controls

• Segmentation of target organ in subsites

• Subsite-specific dose estimation

• Often: average anatomy assumed
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Example: Stomach cancer after testicular cancer

• For each testicular cancer treatment combination, dose estimated to 464

points in a stomach with typical anatomy

• Doses averaged within subsites cardia, fundus, body, antrum and pylorus

• For cases, used dose to tumor location, for controls dose to same location

as matched case
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Why use only dose to tumor location?

Langholz et al., 2009
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Properties of different methods

• CCML

1:2

Wastes a lot of information

• CL

1:8

Immune against control selection bias

Cost savings since no controls needed

• CCAL

1:26

Most efficient since all data used
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Some complications

• Some cases with unknown tumor location

• Subsite-specific baseline cancer incidence needs to be modelled

• Unexposed cases are lost from CL

• Assumption: biologically relevant dose at a specific location is radiation

dose at that location

• Ignores non-targeted or volume effects (stem cell repopulation, bystander

effect)

• Not yet applied to real data
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Combination of organs with individual organ dose
estimates

• Imagine cohort study with organ dose estimates for >10 different organs

• Cancer at individual sites is rare so combination of sites is necessary

• Which dose should be used?
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Joint analysis of site-specific cancer risk
(Pierce & Preston 1993)

• Each subject contributes k observations, one for each organ

• Each organ in each subject has its own survival time & is associated with

unique radiation dose

• Unit of observation = organ not individual

• Competing risk theory for censored survival data
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Example: Solid cancer incidence in a-bomb survivors

• Stomach dose for cancers of the digestive tract

• Lung dose for the respiratory system

• Intestinal dose for other cancers

Pierce & Preston 1993
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Wrap-up

• Nested case-control study

• Linear excess relative risk model

• Shape of dose-response relationship

• Interaction

• Choice of dose metric
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